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The theory of types with which we shall be concerned is intended to be

a full scale system for formalizing intuitionistic mathematics as de-
veloped, for example, in the book by Bishop[1]. The language of the
theory is richer than the languages of traditional intuitionistic systems in
permitting proofs to appear as parts of propositions so that the proposi-
tions of the theory can express properties of proofs (and not only
individuals, like in first order predicate logic). This makes it possible to
strengthen the axioms for existence, disjunction, absurdity and identity.
In the case of existence, this possibility seems first to have been indicated
by Howard [10], whose proposed axioms are special cases of the existen-
tial elimination rule of the present theory. Furthermore, there are axioms
for universes (in the sense of category theory) which link the generation
of objects and types and play somewhat the same role for the present
theory as does the replacement axiom for Zermelo-Fraenkel set theory:
They also make the theory adequate for the formalization of certain
constructions in category theory, like the construction of the category of
all small categories.

An earlier, not yet conclusive, attempt at formulating a theory of this
kind was made by Scott{19]. Also related, although less closely, are the
type and logic free theories of constructions of Kreisel{12, 13] and
Goodmanf|8§]. '

In its first version, the present theory was based on the strongly
impredicative axiom that there is a type of all types whatsoever, in
svmbols, V € V, which is at the same time a type and an object of that
type. This axiom had to be abandoned, however, after it had been shown
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to lead to a contraction by Girard[7]. I am very grateful to Jean-Yves
Girard for the discovery of the paradox.

The incoherence of the idea of a type of all types whatsoever made it
necessary to distinguaish, like in category theory, between small and large
types. Thus the universe V appears, not as the type of all types, but as the
type of small types, whereas V itself and all types which are built up from
it are large. This makes the types wellfounded and the theory predicative.
However, even in this second form, a serious defect remained: the
definition of convertibility, the formal counterpart of definitional equality,
turned owut to be too liberal in allowing unrestricted conversions under the
lambda sign and other variable binding operators. The reasons for this and
the corrections that have to be made are all explained in Martin-1.61 [16].

In this third version, identity has been added as a primitive, the universe
V' has been extended to a whole sequence

V=wViceV,e--EV, E"",

which gives the theory more natural closure properties, and the definition
of convertibility has been corrected. This has only been possible by
abandoning bound variables altogether, except in certain informal
metanotations. As a result of the changes in the definitions of convertibil-
ity and reduction, the previous defects (pointed out in Martin-L6f[16]) in
the proof of normalization are removed. Also, because of the type
restrictions on the rules of conversion and reduction, the method for
proving the Church-Rosser property developed in combinatory logic
apparently no longer works. Instead, the uniqueness of normal form and
the Church-Rosser property are proved, almost without effort, as corol-
laries to the construction of the term model by a new method, due to Peter
Hancock.

As for the proof theoretic strength of the theory, it has been conjec-
tured by Peter Hancock that the ordinal of the theory based on the first n
universes equals, in Veblen’s notation,

©
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In particular, for n =0, that is, for the theory without universes, we get
just eo, whereas, for the full theory, we get

lim ¢ )=,
©)

which is the ordinal of predicative analysis determined by Schiitte[20, 21]
and Feferman[5].
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1. Informal explanations of the primitive notions

1.1. Mathematical objects and their types

We shall think of mathematical objects or constructions. Every
mathematical object is of a certain kind or type. Better, a mathematical
object is always given together with its type, that is, it is not just an
object: it is an object of a certain type. This may be regarded as a simpler
and at the same time more general formulation of Russell’s doctrine of
types [18], according to which a type is the range of significance of a
propositional function, because, in the theory that I am about to describe,
every function, and thus, in particular, every propositional function, will
indeed have a type as its domain. A type is defined by prescribing what we
have to do in order to construct an object of that type. This is almost
verbatim the definition of the notion of set given by Bishop{1]. Put
differently, a type is welldefined if we understand (or grasp to use a word
favoured by Kreisel[15]) what it means to be an object of that type. Thus,
for instance, N — N is a type, not because we know particular number
theoretic functions like the primitive recursive ones, but because we think
we understand the notion of number theoretic function in general. Note
that it is required, neither that we should be able to generate somehow all
objects of a given type, nor that we should so to say know them all
individually. It is only a question of understanding what it means to be an
arbitrary object of the type in question. 1 shall use the notation

acA
to express that

a is an object of type A.

1.2. Propositions and proofs

A proposition is defined by prescribing how we are allowed to prove it,
and a proposition holds or is true intuitionistically if there is a proof of it.
For example, T

< 971 is a nonprime number

is the proposition which we prove by exhibiting two natural numbers
greater than one and a computation which shows that their product equals
971. In the present context, however, it will not be necessary to infroduce
the notion of proposition as a separate notion because we can represent
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each proposition by a certain type, namely, the type of proofs of that
proposition. That the proofs of a proposition must form a type is inherent
already in the intuitionistic idea of considering proofs as mathematical
objects when taken together with the doctrine of types. Indeed, if the
proofs of a proposition are to be considered as mathematical objects, they
must form a type, namely, the type of proofs of the proposition in
question.

Conversely, each type determines a proposition, namely, the proposi-
tion that the type in question is nonempty. This is the proposition which
we prove by exhibiting an object of the type in question. On this analysis,
there appears to be no fundamental difference between propositions and
types. Rather, the difference is one of point of view: in the case of a
proposition, we are not so much interested in what its proofs are as in
whether it has a proof, that is, whether it is true or false, whereas, in the
case of a type, we are of course interested in what its objects are and not
only in whether it is empty or nonempty.

Whern a type A is thought of as a proposition,

acEA
expresses that.
a is a proof of the proposition A.

On the formal Jevel, the analogy between formulae and type symbols
was discovered by Curry and Feys{3] and further extended by
Howard[10] to whom I am indebted for explaining it to me. In what
follows, I shall make use of it in much the same way as Scott{19].

1.3. Properties

A propositional function defined on a type A is called a property or, in
intuitionistic terminology, a species of objects of type A. Because of the
correspondence between propositions and types, it will sometimes be
convenient to call a type valued function defined on A a species of
objects of type A as well. Note that the notion of property is not a
primitive notion: it is explained in terms of the notion of proposition (or
type) and the notion of function. If a is an object of type A and B a
species of objects of type A, then B(a) is the proposition that a belongs
to the species B. This proposition will invariably be written B(a) in order
to avoid confusion between the belonging relation and the relation
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between an object and its type for which we have reserved the epsilon
notation. Thus, for example, if N denotes the type of natoral numbers,
then 3 € N expresses that 3 is a natural number, whereas the proposition
that 3 is a prime number is denoted by P(3), assuming of course that P
denotes the property of being a prime number (which is a property of
natural numbers).

1.4, Cartesian product of a family of types

Suppose now that A is a type and that B is a function which to an
arbitrary object x of type A assigns a type B(x). Then the cartesian
product

IIx € A)B(x)

is a type, namely, the type of functions (rules or methods) which take an
arbitrary object x of type A into an object of type B(x). Clearly, we may
apply an object b of type (I1x € A)B(x) to an object a of type A, thereby
getting an object

b(a)

of type B(a). When B(x) represents a proposition for every object x of
type A, (IIx € A)B(x) represents the universal proposition

(¥x € A)B(x).

A proof of (Vx € A)B(x) is a function which to an arbitrary object x of
type A assigns a proof of B(x).

Functions may be introduced by explicit definition. That is, if we,
starting from a variable x which denotes an arbitrary object of type A,
build up an expression b[x] which denotes an object of type B(x), then
we may define a function f of type (IIx € A)B(x) by the schema

f(JC) = et b[X].

The square brackets are used to indicate the occurrences of the variable x
in the expression b{x].

If B(x) is defined to be one and the same type B for every object x of
type A, then (IIx € A)B(x) will be abbreviated

A — B
It is the type of functions from A to B. When A and B both represent
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propositions, A — B represents the implication
ADB.

A proof of A D B is a function which takes an arbitrary proof of A into a
proof of B.

1.5. Disjoint union of a family of types

Given a type A and a function B which to an arbitrary object x of type
A assigns a type B(x), we may form the disjoint union

Zx e A)B(x)

which is the type of pairs (x, y) where x and y are objects of types A and
B(x), respectively. When B (x) represents a proposition for every object
x of type A, Gx € A)YB(x) represents the existential proposition

(3x € A)B(x)

which we prove by exhibifing a pair (x, y) consisting of an object x of
type A and a proof y of the proposition B(x).

Let C be a function which to an arbitrary object of type (Zx € A)B(x)
assigns a type. Given a binary function g which to a pair of objects x and
y of types A and B(x), respectively, assigns an object of type C((x, y)},
we may then define a unary function f which to an object z of type
(Zx € A)B(x) assigns an object of type C(z) by the schema

FUx, ¥)) =au (%, ).
In particular, we can define the left and right projections by putting

{p ((x, ¥)) =aes X,
q((%, ¥)) =ace .

Clearly, p and g take an object z of type (2x € A)B(x) into objects of
types A and B(p(z)), respectively.

A third function of (£Ex € A)B(x) is to represent the type of all objects
x of type A such that B(x), because, from the intuitionistic point of view,
to give an object x of type A such that B(x) is to give x together with a
proof y of the proposition B (x). This interpretation of the notion of such
that is implicitly used by Bishop[1] and discussed by Kreisel[14].
However, its explicit formulation compels us to regard proofs as
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mathematical objects. For example, the type R of real numbers is defined
as

ExEN->QNUmENYII R € N)[Xnsn — % |=27")

Thus a real number is a pair (x, v), where x is a sequence of rational
numbers and y is a proof that x satisfies the Cauchy condition,

An example which shows the necessity of treating proofs as mathemati-
cal objects is afforded by the inverse function which is not of type R — R
but of type (Il z € R) (z # 0 — R), because the definition of the inverse 77
of a nonzero real number z depends effectively on the proof that 2 0. A
similar phenomenon occurs in the intuitionistic theory of ordinals of the
second number class where the subtraction function is not of type
O—-»(0—=>0)ybutof type Al x € O)J1l y € O)(x <y — O), because the
definition of the difference y —x of two ordinals x and y depends
effectively on the proof that x < y.

In the special case when B(x} is defined to be one and the same type B
for every object x of type A, (£x € A)B(x) is abbreviated

A X B,
It is the cartesian product of the two types A and B. I A and B both
represent propositions, then A X B represents their conjunction

A &B,

a proof of which is a pair consisting of a proof of A and a proof of B.

1.6. Disjoint union of two types

If A and B are types, so is the disjoint union
A+B

which is the type of objects of the form i{x) with x of type A or j(y) with
y of type B. Here i and j denote the canonical injections. When A and B
both represent propositions, A + B represents their disjunction

A v B,

a proof of which consists of either a proof of A (together with the
information that it is A that has been proved) or a proof of B (together
with the information that it is B that has been proved).

Let C be a function which to an object of type A + B assigns a type,

o
o
E
513

AN INTUITIONISTIC THEORY OF TYPES 31

and suppose that g is a function which to an object x of type A assigns an
object of type C(i(x)) and that k is a function which to an object y of
type B assigns an object of type C(j(y)). Then we may define a function f
which to an object z of type A + B assigns an object of type C(z) by the
schema

{f(i(x)) =aet (X)),
FGO)) =ae (Y.

1.7. Identity

If x and y are objects of one and the same type A, then

I(x, )

is a proposition, namely, the proposition that x and y are identical. This is
the proposition which is defined by stipulating that, if x is an arbitrary
object of type A, then r(x) is a proof of I{x, x). Thus r is our notation for
the introductory axiom of identity (Vx € A)I(x, x).

Let C be a ternary function which to an arbitrary pair of objects x and
y of type A and a proof of I(x, y) assigns a type. Given a unary function g
which to an object x of type A assigns an object of type C{x, x, r(x)), we
may then define a ternary function f which to a pair of objects x and y of
type A and a proof z of I'(x, ¥) assigns an object of type C(x, y, z) by the
schema

6%, 7(x)) =aer g(x).

In particular, if C(x) represents a proposition for x of type A and g is the
function which to an object x of type A assigns the obvious proof of
C(x)D C(x), that is, the identity function on the type C(x), then the
function f infroduced by the schema above is the intended proof of the
usual eliminatory axiom of identity

(Vx € A)(Vy € A)I(x, y) D (C(x) D C(yN).

1.8. Finite types

For each nonnegative integer n, we introduce a type N, with precisely
the n objects 1,2, ..., n. Actually, it would suffice to introduce N, and N,
because, for n greater than one, we can define N, to be the disjoint union
of N, with itself n times.

If C is a function which to an arbitrary object x of type N, assigns a
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type and ¢;, ..., ¢. are objects of types C(1), ..., C(n), respectively, then
we may define a function f which to an object x of type N, assigns an
object of type C(x) by the schema

f(]-) = def Cl,

f(ﬂ) et Che

In particular, for n = 0, Ny is the empty type @ which also represents the

fogical constant falsehcod L, and the function f defined by the above

schema (which in this case is vacuous) is the empty function. Similarly, the

one element type N, is used to represent the logical constant truth T.
Negation is defined as usual by

—A =g A— 1

and is hence not taken as a primitive notion. A proposition A is false if
— A is true, that is, if there is a proof of A — L. Note that this is an
affirmative statement.

1.9. Natural numbers

N isatype, namely, the type of natural numbers. Qis an object of type N,
and, if x is an object of type N, so is its successor s (x ). These are the first
two Peano axioms.

Let C be a function which to an arbitrary natural number assigns a
type. Then, given an object ¢ of type C(0) and a binary function g which
to a natural number x and an object of type C(x)} assigns an object of type
C(s(x)), we may define a unary function f which to a natural number x
assigns an object of type C(x) by the recursion schema

{f(o) Zdef €,
F(s(x)) =aer g (x, fOX)).

If C(x) represents a proposition for every natural number x, then f is the
proof of the universal proposition (Vx € N)C(x)} which we get by applying
the principle of ‘mathematical induction to the proof ¢ of C(0) and the
proof g of (Vx ENWC(x)D C(s(x)).

1.10. Universes

The abstractions described so far still do not allow us to define enough
types and type valued functions. For example, we want to be able to

s
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define the type of finite sequences of natural numbers as (2 x € N)F(x),
where

{F(O) = def Nl,
F(5(x)) =au F(x)*xN.

This can clearly be done by recursion if only the types N, and N were
objects of some type V with the closure property that, if A and B are
objects of type V, so is A X B. Also, we want to be abie to define
transfinite types like (Il x € N)G (x), where

{G(O) =ger N,
G(s(x)) =u: G(x) > N.

Again, this offers no difficulty if only there were a type V such that N isan
object of type V and A — B is an object of type V as soon as A and B
are objects of type V.

Guided by these heuristic considerations, we introduce a type V which
will be called a universe and whose objects are to be types together with
the reflection principle which roughly speaking says that whatever we are
used to doing with types can be done inside the universe V. More
precisely, this means that V is closed with respect to the following
inductive clauses. If A is an object’of type V and B is a function which to
an arbitrary object of type A assigns an object of type V, then
(Ix € AYB{x) and (T x € A)B(x) are objects of type V.If A and B are
objects of type V, sois A+ B. If A is an object of type V and a and b
are objects of type A, then I(a, b) is an object of type V. No, Ny, ...and N
are objects of type V. Note, however, that the reflection principle does not
justify the axiom that V is an object of type V which Girard[7] has shown
to be contradictory, because then V would so to say have to have been
there already before we introduced it.

It is not natural although possible to add the principle of transfinite
induction on V, expressing the idea that V is the least type which is closed
with respect to the above inductive clauses, because we want to keep our
universe V open so as to be able to throw new types into it or require it to
be closed with respect t6 new type forming operations. For example, we
may want it to include the type O of ordinals of the second number class or
to be closed with respéct to the operation which to a type A assignsthetype
W({A) of wellfounded trees over A (see Tait[23], Scott{19] and
Howard[11]).

Borrowing terminology from category theory, a type which is an object
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of type V is said to be small whereas V itself and all types which are built
up from it are large. Thus the universe V is the type of small types. With
this distinction between small and large, the present theory, despite its
limited proof theoretic strength, is adequate for the formulation of the
basic notions and constructions of category theory such as the construc-
tion of the category of all small categories. However, it does not
legitimatize the construction of the category of all categories whatsoever
which, in view of Girard’s paradox, seems highly dubious.

The use of the reflection principle in the present theory, on the one
hand, to overcome the unnatural limitation to the finite type structure
over the basic types and, on the other hand, to make possible the
formalization of category theory should be compared to the use of the
quite different reflection principle in the equally different language of set
theory for the same purposes. The idea of using the set theoretic
reflection principle for the formalization of category theory is due to
Kreisel[12] and has been elaborated by Feferman[5].

The idea of introducing a universe can be iterated so as to obtain a
whole sequence of universes

v = def Vo, Vl, aeey Vn, [P

As before, V =4 V), is the type of small types, whereas V, is the type of
large types, V. the type of extra large types, and so on. Generally, an
object of type V., is said o be a type of order n. It will also be convenient
to say that a function from a type A into the universe V, is an n™ order
property (or species) of objects of type A.

The axioms governing the sequence of universes are obtained by
extending in the natural way those for small and large types. Thus, for
every n, V, is a type of order n + 1, in symbols,

V. € Vo

If A is a type of order m and B is a function from A into V,, then
Tx € A)B(x) and (£ x € A)YB(x) are types of order max (m, n). The
order of A + B is the maximum of the orders of A and B. If A is a type of
order n, then the identity relation on A is also of order n, that is, I'(a, b)is
an object of type V, for arbitrary objects a and b of type A. Finally, the
basic types Ne, N1, ... and N are all of order 0.

With the sequence of universes, we achieve that every type is at the
same time an object and, as such, has itself got a type. The difference
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between having just one universe and a whole countable sequence of
them is like the difference in set theory between the simple axiom that
there exists a universe and Grothendieck’s axiom that every set is
contained in a universe.

1.11. Definitional equality

The relation of definitional equality, denoted by =.r, has already
appeared in the definitional schemata associated with each of the basic
types and type forming operations. A definitional schema consists of a
certain number of defining equations. As usual, call the left hand member
of a defining equation the definiendum and the right hand member the
corresponding definiens. Definitional equality is defined to be the equival-
ence relation, that is, reflexive, symmetric and transitive relation, which is
generated by the principles that a definiendum is always definitionally
equal to its definiens and that definitional equality is preserved under
substitution. The latter means that, if we replace a part of a mathematical
expression by a definitionally equal expression, then the resulting expres-
sion is definitionally equal to the one we started with. In schematic form,
we may write the rules determining the relation of definitional equality as
follows:

d det C

definiendum = detf deﬁmens, m

@ =g b 8 =aqux b b =qc
b =ger O : A =get € '

a4 =ger a,

The only way in which the notion of definitional equality enters into a
mathematical construction or proof, except in the definitional schemata
themselves, is in applications (usually unconscious) of the principle

if a is an object of type A and A =, B, then g is an object of
type B,

and, correspondingly for propositions and proofs,

if a is a proof of the proposition A and A =4« B, then a is a
proof of the proposition B.

This principle, which is quite indispensable, might be called the principle
of replacing a type (proposition) by a definitionally equal iype (proposi-
tion). As a typical application of it, consider the following construction.
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Define by recursion

{F(O) =ger N,
F(s(x)) =aet F(x)— F(x).

Then, if g is a function of type (Il x € N)F{x), we may define a function f
of the same type by the explicit definition

Fx) =aer g (s (XN g (x)).

Of course, this presupposes that g(s(x))(g (x)) denotes an object of type
F{(x) for an arbitrary natural number x. This, on the other hand, is seen as
follows. Since g is a function of type (II x EN)F(x) and 5(x) is a natural
number,

g(8(x)) is an object of type F(s(x)).

But F(s({x)} =4 F(x) — F(x) and hence, by the principle of replacing a
type by a definitionally equal type,

g(s(x)) is an object of type F(x) — F(x).

Finally, g(x) being an object of type F(x), we can apply g(s(x)} to g(x),
thereby getting an obiect g(s(x)(g{(x) of type F(x).

Another application of the principle is in the proof of the fact (to be
used in the proof of uniqueness of normal form) that, for two objects a
and b of some type A,

if @ =4x b, then I(a, b) is true, that is, @ and b are identical.

The argument is this. First we conclude from a =..b that
I(a, a) =4 I(a, b). But I{a, &) is an axiom and hence, by the principle of
replacing a proposition by a definitionally equal proposition, we can
conclude I(a, b) as desired. (More pedantically, from the fact that r(a) is
a proof of I{a, a), the principle allows us to conclude that r(a) is a proof
of I(a, b) and hence that I(a, b) holds.)
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2. Formalization of an intuitionistic theory of types

2:.1. Terms and type symbols

The formal system that we shall erect consists of a certain number of
mechanical rules for deriving symbolic expressions of the forms

aEA
and

aconv b

which are to be read a is a term with type symbol A and a converts into b,
respectively. In the intended interpretation, ¢ € A will mean that a is an
object of type A and a conv b that a =. b. A rule is classified as a rule
of term formation or a rule of conversion depending on whether its
conclusion is of the form a € A or a conv b, If, for some A, g is a term
with type symbol A, then a is a term. The rules of conversion are such
that it is immediately clear that, paralle! to a derivation of a conv b, there
run derivations of a €A and b € B for some A and B. Thus the
convertibility relation is a relation between terms. Keeping this in mind, it
will also be clear that, if g is a term with type symbol A, then A is a term.
Thus the epsilon relation is likewise a relation between terms.
If A is a term with type symbol V,, that is, if

AeEV,

has been derived, then A is a fype symbol of order n. And, if A is a type
symbol of order n for some n =10, 1, ..., then A is a {ype symbol.

2.2. Variables

Given a type symbol A, we may introduce a variable x with type
symbol A. Variables will preferably be denoted by the letters x, y, z, ...,
possibly with subscripts. The type symbol of a variable must be uniquely
associated with the variable in question. Thus x cannot be a variable with
type symbols A as well as B unless A and B are (syntactically) identical.

A variable x with type symbol A is a term with type symbol A, in
symbols,

x €A,

This is the first rule of term formation. Writing the symbol string x € A
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corresponds to saying informally
let x be an arbitrary object of type A.

If a derivation is viewed as a tree like arrangement of expressions of the
forms a € A and a conv b, then the topmost expressions of the form
X € A are called the assumptions of the derivation in question. This is in
analogy with the terminology introduced by Gentzen[6] for his system of
natural deduction for first order predicate logic.

Bvery derivation depends on a certain number (possibly zero) of
variables. If a derivation of @ € A depends on certain variables, we shall
also say that the term a depends on these variables. In particular, a type
symbol A is said to depend on the variables on which the derivation of
A €V,, which shows that it is a type symbol, depends. The notion of
dependence is defined inductively by stipulating that, if x €A is an
assumption of a derivation, then this derivation depends on the variable x
as well as on all the variables on which the type symbol A depends. A
derivation is closed if it depends on no variables at all or, equivalently, if
it contains no assumptions. A term a is closed if the derivation of a € A,
which shows that it is a term, is closed. In particular, a type symbol A is
closed if the derivation of A € V,, which shows that it is a type symbol, is
closed. The rules of term formation and conversion are such that no
variables can occur in a €A or a conv b except those on which the
derivation of a € A respectively a conv b depends, Hence a closed term
or type symbol is variable free.

If x4, ..., % is a sequence of variables which contains all those on which
aterm a depends, we shall sometimes denote a by a[xi, ..., %] in order to
indicate that these variables (and no others) may occur in a. Moreover, we
shall always assume in such cases that the variables X1, ..., X have the
property that, for i =1,..,k, the type symbol A[x,,...,x_] of the
variable x; depends on no other variables than the preceding ones
X wuny X1 .

The result of substituting ay, ..., ax for all occurrences of the variables
X1, oy X i @x 500,51 will be denoted by

a [(11, ey ak].

Here it is supposed, of course, that a,, ..., a. are terms with type symbols
A, ..., Aclas, ..., an_], respectively.
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2.3. Constants

In addition to the variables, there are function constants, preferably
denoted by f, g, h, ... . Each function constant f has associated with it not
only a place index k, indicating the number of argument places, but also
type symbols

Avy i, Ay, o, Xea] and Alx, ., xd,

indicating the successive types of its arguments and the type of its value
for these arguments, respectively. Note that, because of our notational
convention, it is here tacitly assumed that A;Ixy, ..., X.,] depends on no
other variables than x,,..,x., for i =1,..,k and that A[x,..., x]
depends on no other variables than x,, ..., X« A 0-ary function constant is
called simply a constant. Note that the type symbol of a constant is
necessarily closed. It will also be convenient to call a function constant
the type of whose value is indicated by one of the symbols V., n =0, 1, ...,
a type valued constant or, in the case of zero argument places, simply a
type constant. Type valued constants will preferably be denoted by F, G,
H, ...

If f is a k-ary function constant whose arguments and value have type

indications as above and a,,.., ac are terms with type symbols
A, .., Adlay, o, de], respectively, then f(as, ..., ax) is a term with type
symbol Ala,, ..., a.]. This is the second rule of term formation which we

may write schematically as

a, < A|, e O E Ah[al, very akfl}
f(al, “iey ak) EA[Q], very ak}

With each of the basic types (except the universes V.) and type
forming operations, there are associated four rules. The first, called the
reflection principle, allows us to introduce a type valued constant as a
notation for the type forming operation in question and asserts, in
addition, that the universes are closed with respect to this eperation. In
the case of a basic type, this will be a type constant which will have the
appropriate V, as its type symbol. The second and third rules are the
introduction and elimination rules (in the sense of Gentzen [6]) associated
with the type or type forming operation in question. The fourth is the rule
of conversion which links the introduction and elimination rules and is the
formal counterpart of the definitional schema associated with the type or
type forming operation that we are dealing with.
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2.4. Rules for 11
I-reflection. 1f
XIE A, ..., X € Aclxy, ..o, x,H]l, xEAlx, ..., x],
Afxy, ... x]€V, and Blx,.. x,x]E V;,,

then we may introduce a function constant F whose argurtents and value
have type symbols

Al, saey Ak{xl, reey xk—[] aﬂd Vrnax(m.n):

respectively, and which is to be uniquely associated with Afx., ..., %],
Blx, ..., 1, x] and the symbol II. The meaning of F will be clear from the
fact that, for a. € A,, ..., & € Alla,, ..., @], We are going to use

(II'x € Alas, ..., a DBla,, ..., e, X]

as an informal metanotation for F(a,,...,a). The use of (Ixe
Alay, ..., acDBla, ..., 4, x1, in which the variable x is bound, as a formal
notation in the system leads to serious difficulties in the definition of
conversion which seem to be avoided best by writing it as F(a,, ..., a).

II-introduction. If blx,, ..., xu, x]1€ B[X1, ..., X, x] depends on no other
variables than x, € Ay, ..., xx € Ac[x(, ..., 1] and x € A{x,, ..., x.]. then
we may introdutce a k-ary function constant f by the schema of functional
abstraction

FGon, oy x)(x) cony bx, ..., X, x1.

The type symbols of the arguments of f are apparent, and its value has
type symbol (Ilx € A[xy, ..., xxDB[x, ..., xx, x]. The variables x, ..., x,
are called the parameters of the schema. For a, €A, .. a4 €
Aila, ..., ax], it will sometimes be convenient to use the expression

(/\x)b {al, coey Ly x},

in which the variable x is bound, as an informal metanotation for

flay ..., a)

[l-elimination. If
acAfay,.., dx] and ce(lx € Alay,..., a)Blay, ..., a., x1,

then c{a) € Blay, ..., a, a]. This is the rule of functional application.
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H-conversion. If
a A], ey O € Ak[a;, vers akfl] and g€ A [al, ees ]

and the function constant f has been introduced by the above schema of
abstraction, then

fla, .., @) conv bla, ..., a, a]
or, using the lambda notation,

(Ax)blai, ..., a, x1(a) conv bla, ..., 4, a].

2.5. Rules for =
S-reflection. If
XIEAL .., EAdXL v Xem] and x € Alxy, ., X

are variables with type symbols as indicated and Afx:, ..., x] € V.. and
Bixi, ..., X, X] € V., then we may introduce a function constant F whose
arguments and value have type symbols

Avy ey A, v, Xiea]l  and  Vason, s

respectively, and which is to be uniquely associated with A [x., ..., xz],
Blxi, ..., X, x1 and the symbol =, For a, € A, o € Aclay, ..., o], We
shall use

ExeAla, .., al)Bla, .., a4, x]
as an informal metanotation for F(a, ..., ).

Z-introduction. Associated with Ex € Alx., ... xDB[x1, ..., X, X1,
thereis a (k + 2)-ary pairing constant with arguments and value of types
A Alxy, o xea], Alxg X, Blxs, oo, X x]
and (E X GA[I],..., xk])B [xl,...,xk,x],

respectively. The result of applying the pairing constant to the terms
[/ PR = Al, vany Ui EAk{al, reay ak,l], a4 e A[al, veey ak] and b € B[a,, vees Uk, a}
will be denoted by

(ai, ..., 4, 4, b)

which, in the case k =0 of no parameters, reduces to the standard
notation {(a, b}.
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Z-elimination. If
X1E AL . X € Ar[X1, .00, Xu—1]s
X EAlX:, ..,x] and ¥y € Blx, ..., X x]
are variables with the indicated type symbols and
elxy, e X X, Y1E€ Clxy, ..., xi (xll, vees Xiy X, Y 1

where C[xy, ..., x, z]is a type symbol which, in addition to the parameters
X1, ..., % depends on a variable

zeE@ExeAlx, .., xDB[xn ..., X1, X1,

then we may introduce a (k + 1)-ary function constant f whose arguments
and value have type symbols

Ar o, AxlXe, o, X,
CExeAlx, .., xDBx, . ., x,x] and Clxi, ..., % 2],
respectively, by the schema
Flxe oy X (Xay s X X, Y)Y cOny X, oy X, X, ¥ ]

Z-conversion. If f is a function constant which has been introduced by
this schema and
a e Ax, veuy O EAk[a., veny akq],

as Alay...,al and b EBlay,..., awal,
then

f(ay, ..., a, (G, ..., a, @, Py conv ¢ [ay, ..., . a, b].

2.6. Rules for +

+-reflection. If x, € Ay, ..., xx € Arlx\, ..., X.] are variables with the
indicated type symbols and A [x, ..., %] € V., and B[x,, ..., x] € V,, then
we may introduce a function constant ¥ whose arguments and value have
type symbols -

A AcfX G ey Xem]  and V mancon, s

respectively, and which is to be uniquely associated with Alx, ..., x.],
B[xi,...,x] and the symbol +. For ai € Ay, ..., a € Ac[ay, ..., G], we
shall use

Alay, .., a1+ Bla, ..., ai]
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as an informal metanotation for F(ay, ..., ).

+-introduction. With each type symbol of the form Alx., .., x]+
B[x., ..., x1, there are associated (k +1)-ary injection constants i and j
whose arguments and values have type symbols

A1, reey Ak [XI, ey Xk—l]; A [xl’ ceey xk]

and A [xl, veey xk} + B[xl, iaey xk]
and
A[, veey A [xl, reey xk—l], B[xl; ey xk}

and Alxi, ..., %]+ B[x, ... %],
respectively. ‘
+-elimination. Suppose that
X E A, o Xk € Ar[X1, crs X1l

X EA[x, ..., %) and y & Blx,, ..., %]

are variables with the indicated type symbols and that Clx,, ..., X, z]1is a
type symbol which depends not only on xy, ..., X but also (possibly) on a
variable z € A[xy, ..., e ] + B[xy, ..., X]. Then, given

X1 ves Xy X1 € CLX1y uey X 1{X1, 1o Xy X,

d[JCl, ey Xy y] = C[X1, ey Xy j(xls vy Xty Y)],

we may introduce a (k + D)-ary function constant f whose arguments and
value have type symbols

A], versy Ak [JC1, very xk_l], AEXI, . Xk] + B[JC;, . Xk}
and Clxi, .., Xk, Z]
by' the schema
Flxiy ey Xig (X1, ooey Xy X)) CODV €[ X1, 00y Xiy X,
F(X1y ey Xiy (X1, ooy Xy YY) cONV A X, o, Xy Y]
+-conversion. If f is a function constant which has been introduced by
this schema and

a;: & A], e, I & Ak[a,, ey ak_|],
a EA[al,'..‘, ak] and b€ B[a1, veey ak],
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then
fay, .., ax, i{as, ..., a, a)) conv cla,y, ..., a, al,
flay, ..., e, j(ay, ..., aw, b)) conv d[ay, ..., ax, b].

2.7. Rules for I

I-reflection. If A[x,, ..., x] is an n™ order type symbol depending on
the variables x1 € A, ..., x« € Au[X1, ..., Xx_1], then we may introduce a
(k +2)-ary function constant T whose arguments and value have type
symbols

Avy ey A, o, Xl
Alx, o xed, Alxy, .o %] and V.

For a €A, .., a € Aclay, ..., 6], a € Ala,...,a] and be
Alay, ..., a:], it is sometimes convenient to write Tatay..aa(a, b) or
@ = Apag,..anb instead of I{a,..., aw. a, b).

I-introduction. Associated with the identity relation on Alxy, oy 2],
there is & (k + 1)-ary function constant r whose arguments and value have
type symbols

Avy e, Aelxy, o, Xko],
Alxy, o] and  T(x, .., %, X, X).

I-elimination. If x. € Asy s Xk € Ag[X1, o, Xiey] and x € Alxy, ..., Xi]
are variables with the indicated type symbols and

X, o %] € Clxy, ooy X, X, x, 7 (X4, ..ny X, x)]

where Clxi, .., %, X, ¥, 2] is a type symbol which, in addition to the
parameters X, ..., x., depends on the variables x € A[xy, .., %], yE
Alxy, ..., X, x) and z € I(xy, ..., X, X, ¥), then we may introduce a (k + 3)-
any function constant f whose arguments and value have type symbols

Al, ey Ak[X1, vees Xiw1], A{)C], vy Xic 1, A[xl, s X ],
|
I(xy, o, X%, ) and  Clx, ..., X X, 9, 7]

by the schema
Flxu, oy X X, %, (X0, oy Xy x))conv clx, ..., X, x].

I-conversion. If f is a function constant which has been introduced by
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this schema and a:€ A, ..., & € Axlai, ..., a—] and a € Ala,, ..., 4,
then B

fla, ooy tis @, a, ¥{ay, ..., G, a)) conv cld., ..., a, al.
2.8. Rules for N,
N, -reflection. For n =0,1,..., N, is a constant with type symbol V,.
N, -introduction. 1, ..., n are constants with type-symbol N..
Ny -elimination. If
Cifxe, e, Xk 1 E CUXyy vy Xiw 1, s G [ X1 oy, 11 € Clxy,y ooy X 1]

where C[x,,..., X, z] is a type symbol which depends not only on the
parameters x, € Ay, ..., X € Ac[X, ..., Xi—1] but also on the variable z €
N,, then we may introduce a (k + D)-ary function constant f who_se
arguments and value have type symbols

A Akl 6o Xied), Noooand Clxy, o, X 21

by the schema

E Flxi, ey X, Dy conv ci[x1, .oy X2 ],

f(x1, .oy Xi, LY CONY Cu [ X0y ooy Xic ).

N.-conversion. If the function constant f has been introduced by this
schema and a, € A\, ..., a. € Aclas, ..., de—1], then

f(a1, veey iy I) cony c}fal, . ﬂk],
flag, ..., a, n)conv c,[ai, ..., d].

2.9. Rules for N
N-reflection. N is a constant with type symbol V.

N-introduction. 0 is a constant with type symbol N, and s is a unary
function constant whose argument and value both have type symbol N.

N-elimination. Suppose that x, € Ay,..., % € AcX1, ..., %], X €N and
y € Clxy, ..., Xx, x] are variables with the indicated type symbols where
C[x1, ..., X, X] 18 & type symbol which depends not only on the parameters
X1, ..., X but also on the numerical variable x, Then, given ¢[x, ..., %] E
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Clx, o %6, 0] and dixy, ..., X, X, ¥1€ C[X4, ..., X, 8{x)], We may intro-
duce a (k + D)-ary function constant f whose arguments and value have
type symbols

A v Aclx, e X, Nooand  Clx, ..., Xk, %]

by the recursion schema
{f(xl, vy X, M cOnv e[ X, .00, X1,

flx,, rees K s{xY conv dxy, ..., Xy, X, F(x1, ..o, X, X ).

N-conversion. If the function constant f has been introduced by this
schema and a, € Ay, ..., & € Ax[ay, ..., dr~] and a € N, then

{f(a., ey G, QY conv ¢ldy, ..., &,

F(@1, .oy G s(a)) conv dldy, ..., G &, flay, ..., G, 4)].

2.10. Rules for V.,

v V.-reflection. For every n = 0,1, ..., V,, is a constant with type symbol
n+1

V.-introduction. The reflection principles for the various basic types
fmd typ(—.: forming operations, which may be considered as the
introduction rules for the universes V., have already been given.

”.Fhere are no elimination rules and hence no rules of conversion for the
universes V..

2.11. Rules of conversion

In addition to the rales of conversion associated with the basic types
and type forming operations, which have been listed under these and
correspond to the informal definitional schemata, there are the following
general rules of conversion.

If a conv e and b ¢onv d, where g and ¢ are terms with type symbol
Alay, ..., ail anqﬂ b _ and d are terms with type symbol (IIx &
Alay, ..., aDBld, ... ax, x1, then b(a) conv d(c).

If f is a function constant whose arguments have type symbols
Ar, vy Ac[x1, 000y Xe1]  and  aiconv e, ..., g conv ¢, where a.€&
Al vy O € A1, .o, ] and ¢ E AL, L, 6 € AklCy, .o, €ia], - then
flay, ..., a) conv f(ey, ..., Ci). ,

The above two rules of conversion can be condensed into the single
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rule which says that, if a.conv ¢y, ..., th CONV Cry then blai, ..., tk] cOnv
blcy, ..., ¢} Here the type symbols of the terms a., ..., 0« and ¢, ..., Cx are
as in the previous paragraph and b[x, ..., X} is a term which depends on no
other variables than x, € A, .., X € AclX1, oy Xe_1]. There now only
remain the rules of reflexivity, symmetry and transitivity.

I g is a term, that is, if a € A has been derived for some A, then
a conv a.

If a conv b, then b conv a.

If a conv b and b conv ¢, then a conv C.

2.12. Conuversion of a type symbol

If a €A and A conv B, then a € B. This formalizes the principle of
replacing the type of an object by a definitionally equal type.

One may ask if the epsilon relation ought not to be postulated to be
compatible with convertibility to the left, that is, if a convb and b € B
should not imply a € B. In the next chapter, we shall see that this rule
actually holds as a derived rule of term formation. If it were included
among the primitive ruies, then it would be immediately clear that,
parallel to a derivation of a4 € A, there runs a derivation of A € V, for
some #. Indeed, when following the derivation of a € A, the only rule that
causes trouble is the rule

aEA A conv B
a&EB

By induction hypothesis, we then know that A € V, for some n. Hence, if
the epsilon relation were postulated to be compatible with convertibility
{0 the left, we could immediately conclude B € V. as desired.

2.13. Axiom of choice

Let x and vy be variables with type symbols A and Blx], respectively,
and let C[x, y] be a type symbol. We shall show how to derive the axiom
of choice, that is, how to construct a closed term with type symbol

(Iix e A)E y €Bx)CIx, y] —
Efelx € A)Bx){Ix € A)Clx, f(x)].
In general, the type symbols A, Blx] and Clx, y] may depend on an
arbitrary finite number of parameters in addition to the indicated vari-

ables, but it will be sufficient to consider the case without parameters,
To begin with, we define the left and right proiections p and ¢ on
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(Zy € BIxDC[x, ¥] by putting
p(x,(x, y, z)) conv y,
{ q(x, (x, v, z)) conv z
The elimination rule for ¥ allows us to do this. Now, suppose
xEA and ze(lx€ANZy € B[xDCIx, v].
Then, by the rule of application,

z(x)eXy € BlxDC[x, ¥]
and hence
p(x, z(x)) € Blx] q(x, z{(x)) € Clx, p(x, z(x))].

Next, the schema of abstraction allows us to define a unary function
constant f whose value has type symbol (Il x € A)B[x] by putting

fz)(x)conv p(x, z(x)).

This implies
Clx, p(x, z(x})] conv C[x, f(z)(x)]
and hence we can convert the type symbaol of g (x, z(x)) so as to obtain
q(x, z(x)) € Clx, f(z)(x)].

Using abstraction again, we can define a unary function constant ¢ whose
value has type symbol (JIx € A)CIx, f(z)(x)] by putting

g(z)(x) conv g (x, z{x)).
Pairing now shows that

(f(z),gzneEfeldlx € A)BxDI x € AYC[x, f(x)).

Hence, if we define the constant h by the abstraction schema

h{z) conv (f(z), g(z)),

we obtain a closed term (in fact, a constant) whose type symbol is
precisely the axiom of choice.

Note that this formal derivation of the axiom of choice is faithful in
every step to the corresponding informal proof. (That the axiom of choice
is implied by the very meaning of the intuitionistic notion of existence is
pointed out, for instance, in [1].)

i
s
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3. The model of closed normal terms, the normalization theorem (for
closed terms) and its consequences

3.1. Reduction

The rules of reduction are the same as the rules of conversion, except
that the symmetry rule {a conv b implies b conv a) is left out, If a
reduces to b, we shall write

a red b.

Observe that
aEA A conv B

achB

counts as a rule of term formation and not a rule of conversion, which
means that, in it, conv should not be replaced by red. Reduction is the
formal counterpart of the process of successively replacing definienda by
their definientia (but not vice versa) in a mathematical expression.

3.2. Closed normal terms

Call a function constant an infroductory constant if it has been
introduced by means of one of the introduction rules, counting the
reflection principles for the various types and type forming operations as
introduction rules for the universes V.. Note that the type symbols of the
arguments and value of an introductory constant are always of the form

Ay o Arlxy o Xl and Fix, .., x),

where F is an introductory type constant, denoting one of the basic types
or type forming operations.

We shall say that ¢ is a closed normal term with type symbol C if ¢ € C
can be derived by repeated applications of the following single rule of
term formation. If f is a (possibly 0-ary) introductory constant whose
arguments and value have type symbols

AL AelXy, oy Xems] and Fxy, ..o, X))

and ¢, € Cy, ..., &« € C; are closed normal terms with the indicated type
symbols and, furthermore, we have closed derivations of

A| red Cg, ceay Ak [C], wers Ck,l] red Ck,

then f(c., ..., ¢} is a closed normal term with type symbol F(cy, ..., Cx).
Note that, if ¢ is a closed normal term with type symbol C, then C is a
closed normal type symbol (that is, a closed normal term with type
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symbol V, for some n) which is uniquely associated with c. If ¢ is a
closed normal term with type symbol C for some C, then ¢ is a closed
normal term.

Remembering what are the possible introductory constants, we see that
a closed normal term must have one of the forms

Mx e Alay, ....,axDB[ay, .., 4, X1,
(Ax)blay, ..., a, x],

ExcAlay, .., a)Blay, ..., a, X1,
{diy ..., O, A, b),

Alay, ., ]+ Blay, ..., ac],

iag, ..., G, a), ila, ..., an, B),
Kay, ..., a, a, b), ‘
rlan, ..., e, al,

N.,

s(s(... s(0)...0,
Vs

the constituent terms d, ..., dx, ¢ and b also being closed and normal. A
closed normal term with type symbol N, which obviously must have the
form

s(s(... 5(0)...),

is called a numeral.

Usually, one first defines a term a to be normal if it does not reduce to
any term but itself, that is, if a red b implies that b is identical with a.
Then the closed normal terms are defined to be those terms which are
both closed and normal. Clearly, a closed normal term as defined above is
a term which is both closed and normal, but the proof of the converse
requires the Church-Rosser property which we shall be able to prove only
as a corollary to the construction of the medel of closed normal terms.
Hence, in systems with a sufficiently complicated type structure, at least,
the natural procedure is to define the closed normal terms inductively as
done above.

£
i
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3.3. Normalization theorem. FEuvery closed term reduces to a closed
normal terim

The normalization theorem can be strengthened in two ways. First, it
can be made to cover open terms as well, and, second, it can be proved
that every {and not only some) reduction sequence starting from an
arbitrary term leads to a unique normal term after a finite number of steps.
The latter property is called strong normalization in Prawitz[17]. How-
ever, since these refinements cause certain technical complications in the
proof which only obscure its main idea, we shall prove the normalization
theorem in its simplest and most natoral form.

The proof uses an extension of the method of convertibility introduced
by Tait[22] in his proof of mormalization for the terms of Godel’s[9]
theory of primitive recursive functionals of finite type and systematically
exploited in the Proceedings of the Second Scandinavian Logic Sym-
posium. In Gddel’s theory, the type symbols and the terms are generated
separately from each other. This makes it possible, first, to define by
induction on the construction of a type symbol the notion of convertibility
for terms with that type symbol, and, second, to prove by induction on the
construction of a term that it is convertible. In the present theory,
however, the-definition of the notion of convertibility and the proof that
an arbitrary term is convertible can no longer be separated, because the
type symbols and the terms are generated simultaneously. Instead, we
shall show by induction on the length of a closed derivation, if it ends with
a € A, how to define a' and a”, where

a' is a closed normal term with type symbol A, called the
normal form of a, such that a red a’,

and

e A
a"isaproof of A”(a’), which it is sometimes more natural to think

of as an object of type A"(a’),
and, if it ends with a conv b, that
a’ =gt b’ and a” =uaer b,

More explicitly, remembering the interpretation of the notion of such
that, this means that we associale with every closed term a three objects:

a’, a’ and the proof that a red a’. However, we shall try to manage
without introducing an explicit notation for this proof. For the term V,, we
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shall put, in particular,

V:. =der Vi
and
V& =a the function which to a closed normal term A with type
symbol V., assigns the type of n™ order species of closed
normal terms with type symbol A,

Hence, for a closed type symbol A of order 1, A’ is a closed normal type
symbol of the same order such that A red A’, and A” is an a™ order
species of closed normal terms with type symbol A’. The normalization
theorem is of course a consequence of the construction just outlined,

because, for an arbitrary closed term a, a’ is a closed normal term and
areda’.

In the course of the proof, we shall have to consider open derivations as
well, that is, derivations which depend on certain variables x, &
Ay X € Ag[xy, ..., X ]. For such a derivation, we shall show, if it ends
with afx, ..., %1€ A[x,, ..., x], how to define

Alxy, o, Xl =aer a’'[xl, XN Xk X,
aflxe, oo X" =aer @”[x1, x5, .., x4 X1,
where

a'lxt, xt, .., xlx% is a closed normal term with type
symbol  A'[x}, xV, ., xLx% such that alxi, ..., xi] red
a'lxi, x4, ..., x5 x4

and a"[x1, xY, ..., x}, x7] is a proof of
A"lx, x4, o xE xd(a@[x, XN, X X,
and, if it ends with a[x,, ..., x:] conv blxi, ..., x.], that
a'lxi, x4 x 2] =a b Ix, X% L, X X1,

a"[xis x"” ALT) x:c; lez] = der b"[xl:, x'{, veny xlk, x’;i .

Also, in case the derivation ends with alx,, oI EAlX, o 1], we
shall have to verify the substitution property, namely, that, if we have
derivations of @\ CA,, ..., a € Aclan, ..., &y] 1o which the induction

hypothesis is already applicable, then

alag, .., aY =wca'lal, al, ..., al, all,

a[ala rrey ak]” = et a”{a;, a’i’, veny a;(, Cl';: .
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M " M f
Observe that the square brackets in a’[x{, xf%, ..., xk, x% and a"[x},
xl x4, xi] are used in order to indicate that these expressions depend
3 rety ’
on the (informal!) variables x1, x1, ..., xi, x% of which

x| denotes an arbitrary closed normal term with type symbol A,

x| denotes an arbitrary proof of AY(x?1),

x4 denotes an arbitrary closed normal term with type symbol
Adxy, x5, ., X, Xl

N r
x¥ denotes an arbitrary proof of A{[x}, x7,..., X0, X5 }xH.

It now only remains to go through systematically all the rules of term
formation and conversion. When doing this, we shall always consider the
case of no parameters in order to alleviate the notational burden.

Variables. When we make an assumption x € A, we can apply the:
induction hypothesis to the derivation of A € V.. Hence we know that A
has been defined and is a closed normal term with type symbol V; =a V.,
and that A" has been defined and is an n'™ order species of closed n?rmal
terms with type symbol A’. Therefore, we can let x' be an arbitrary
closed normal term with type symbo! A’ and x” an arbitrary proof of

An(xf)_
Constants. With a function constant f/ whose arguments and value

have type symbols
A;,...,Ak[X1,...,xk—1] and A{Xl, ...,xk],

we shall associate two functions f' and f" of twice as many arguments
nts
xl,xl, .., Xk x%t whose types are as above. For t}}ehse{ argume bO],
i sym
Fxi, x%, ..., X% X% is to be a closed normal term with fype sy
A'lxy, x5, ..., Xk x&] such that

flxt, o xred f'(xh, x1, L xh x5,
and f"(xi, x7,..., Xk X% is to be a proof of
AxL, X, o X x B (0, 1%, L xk X)),
Hence, corresponding to an application of the rule of term formation

aEA a € Ala, ., Gl
fla,...,ax )€ Ala,, ..., a]
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we can put
f(als aeey ak)’ :deff!(a;, a’{, cary a;(, a'ﬂ ,
f(al} ey ak)” = def f”(a;, alll, . (.I;;, a';ﬁ .

Using the induction hypothesis and the substitution property, we see that
flay, ..., &) so defined is a closed normal term with type symbol
Alay, ..., a.] such that

flay, ..., a)red flai, ..., adred f'(ay, a¥, ..., al @) = at f(as, ..., ai)'

and that f(a,.., &) is a proof of Ala,...,al]"(f(a, ..., a)). And,
obviously, the substitution property carries over from da.,..., 4 1o

f(al, . ak).

H-reflection. We put
(Ix € A)B[x] =uwe(llx € A)B[x]
and, for a closed normal term ¢ with type symbol (ITx &€ A)B[x7,

(IIx € A)B[x1'{c) = for all closed normal terms x' with type
symbol A’ and- for all proefs x" of
AM(x"), c(x’) reduces to a closed normal
term y' with type symbol B'[x’, x"] such
that B"[x’, x"1(y").

[T

Clearly, if A € V,, and B{x]€ V., (IIx € A)B{x] so defined is a closed
normal type symbol of order max (m, n) such that

{Ix = A)YB[x]red (IIx € AYB[xT,

and (ITx € A)B[x]" is a species of closed normal terms with type symbol
(Il x € AYB{xY of the same order.

O-introduction. If b[x]< B[x] depends on the variable x € A and the

constant f with type symbol (Ilx € A)B[x] has been introduced by
absfraction,

f(x)conv blx],
we put
f’ :dcff
and
" =ucr the function which to a closed normal term x’ with type
symbol A’ and a proof x" of A"(x’) assigns the triple

AN INTUITIONISTIC THEORY OF TYPES 105

consisting of b'[x’,x"], b"[x',x"] and the proof of
fxyred b'[x', x"] which we get by transitivity from
f{x'Yred b[x'] and the proof of b[x']red b'[x’, x"] which
we have constructed by induction hypothesis,

Clearly, ' so defined is a closed normal term with type symbol (I1x €
A)B[x] such that fredf’, and f" is a proof of (Il x € A)B{x]"(f").

[I-elirnination. For a € A and c € (Il x € A)B|[x], we put

cla) =awrp'(c”(a’, a™),
C(a)ﬂ :dgfp"((:”(a’, a.’l))’

where p' and p” are the projections which take a proof of the existential
proposition

there exists a closed normal term y' with type symbol B'[a’, a”]
such that B"a’, a"l(y") and c¢’'(a’)red y’

into the object ¥’ and the proof of B"[a’, a”l(y"), respectively. By the
substitution property, B'la’,a”] =wrBlal and B"[a’.a"]=w.rBlal".
Hence c(a) is a closed normal term with type symbol B{a] and ¢{a)" is
aproof of Bla]'(c(a)). Also, froma red a’, c red ¢’ and ¢’(a"Yred c(a)’,
we can conclude ¢(a)red c(a). That the substitution property carries
over from a and ¢ to ¢(a) is obvious.

I-conversion. If ¢ € A and f has been introduced by the above schema
of abstraction, then

fla) =w:p'(f'(a’, a") =cx b'{a’, "] = b[a],
fla) =ewp"(f{a’, a")) =4 b"[a’, a”] =uw blal,
as desired. Here the last steps in the two chains of definitional equalities
follow from the substitution property.
Z-reflection. Put
ZxeA)Blx] =w (Ex € A)B[x]

and define the species (Z x € A)B[x]" of closed normal terms with type
symbol (2 x € A)B{xY by the proof condition '

if x' is a closed normal term with type symbol A’, x" a proof of
A"(x"), y' a closed normal term with type symbol B'[x’, x"] and
y" aproof of B"[x’, x"1(y'), then the quadruple (x', x”, y', y"isa
proof of (T x € AYB[xT{{(x', ¥y)).
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Clearly, if A€ V,, and B[x]€ V,, then (Ex € A)B{x] so defined is a
closed normal type symbol of order max (m, n) such that (2 x € A)B[x]
red (2 x € A)B{x7,and (T x € A)B[x}"is a max (m, n)" order species of
closed normal terms with that type symbol.

Z-introduction. For x € A and v € B{x], we put

(X, ¥) =ac(x’, ¥7),

which is a closed normal term with type symbol (T x € A)B[x] such that
(x', y)red (x, y), and

(X, ¥ =aer (x7, 27, ¥, ¥"),
which is a proof of (T x € A)B[x]"((x, v)) as required.

S-elimination. If c[x, y1 € C[(x, ¥)] depends on the variables x € A
and y & B[x] and the unary function constant f has been introduced by
the schema

flx, y))convelx, yl,
we put
F, ») (0 x" v, ¥ =ae e 'Ix’, x" y', 970,
Uy (e x99 =aer X7, X7, ¥ ¥
By induction hypothesis, we know that ¢'[x’, x", ¥/, ¥"] is a closed normal
term with type symbol

Ci(x, V] =aee C'I(x, y), (6, )] =aee C'[(x", ¥), (X7, x", ¥, 3]

such that c[x’, y']red ¢’[x', x", ¥', ¥"] and that ¢"[x’, x", y', y"] is a proof
of

CIx’, vy, (', x", y', y" e Tx", X", y", y"D)
=aer C"T(x", ¥ (x, x", ' y" N U, 97, (%7, 27, 97, ¥,

{Note the tacit use of the principle that a proof of a proposition is also a
proof of a definitionally equal proposition!) IHence the functions f' and f”
as we have defined them take a closed normal term z’ with type symbol
(Z x € A)B[x]andaproof z” of (2 x € A)B[x]"(z') into a closed normal
term with type symbol C'[z’, z"] such that f(z'}red f'(z’', z") and a proof
of C"z', z"I(F'(z’, z")), respectively.

Z-conversion. If a € A and b € Blaland f has been introduced by the
above schema, then
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flla, b)) =a f'((a, bY,{(a, b)) =awcf'((a’, b"),(a’,a", b’', b")
=g c'la’,a”, b',b"] = c[a, bY,

flla, BYY =aer (@, bY.(a, b)) =acc f"((a’, "), (a’, a", b', b")
= det C”[a’s a’”s brs b”] == def C[a9 b]"!

as desired. The last steps in the two chains of definitional equalities follow
from the substitution property.

+-reflection. For A € V,, and B € V,, we put
(A+B) =wx (A + B)

and define the species (A + B)” of closed normal terms with type symbol
(A + B)Y by the proof conditions

if x' is a closed normal term with type symbol A’ and x" is a
proof of A"(x"), then i"(x’', x") is a proof of (A + B)Y'(i(x)),

if y' is a closed normal term with type symbol B’ and y" is a
proof of B"(y"), then j(y’, y") is a proof of (A + B)'(j(3»")).

Remembering that A + B is but an informal notation for a constant with
type symbol Vo n, it is clear that (A + B) is a closed normal term with
that type symbol such that (A + B)red (A + B), and that (A +B)" is a
max (m, n)" order species of closed normal terms with type symbol
(A +BY.

+-introduction. For a closed normal term x' with type symbol A’ and a
proof x” of A"(x"), we put
P, x") =aer i(x7),

which is a closed normal term with type symbol (A + B)Y such that
i(x)redi’'(x’,x"), and let i” be the function introduced in the previous
paragraph which takes x’' and x” into a proof of (A +B)'(i(x")). The
second rule of +-introdiiction is treated similarly.

+-elimination. If cix]1€ Cli(x)] and d[yl1€ C[j(y)] depend on the
variables x € A and y € B, respectively, and the unary function constant
f has been introduced by the schema

{f(i(X)) conv ¢[x],
fG(y)conv diy],
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we put
PO, i"(x', x") =a 0’ [x7, x7],
PO, ¥ =w d'ly, ¥,
Fren), i"(x', ™) =aer ¢"[x7, x"],
GO T, YY) =w dly, v'].
Since

CLG) = C'li(x"), i"(x’, x")],
CL)(clxT) =aee C'TE(x"), (', x] G (X, i"(x", ")),

Flix)yred clx’Tred ¢'[x’, x"] =4t f(I(x"), i"(x", x"M),
and correspondingly for j(y) instead of i(x), the functions f’ and f" take a
closed normal term z' with type symbol (A + B) and a proof z” of

(A + B)'(z') into a closed normal term with type symbol C'[z’, z] such
that f(z")red f'(z’, z") and a proof of C*[z’, z"}{(f'(z’, z")), respectively.

+-conversion. If a €A and f has been introduced by the above
schema, then

fl(a)Y =w f'(i(a), i(@)) =ac f'(i(a"), i"(a’, a")
= def C’{a” a”] aet C [a}'s
fi(a))" =aee f'(i(a), i{a)") =uwx f"(i{a"), i"(a’, a")
= def C”[ar: a”] = def C {a }"y
as desired. Similarly for j(b) instead of i(a).

I-reflection. If the binary function constant I denotes the identity
relation on A € V,,, we put

Fx', %"y, ") =ae I(x', y')

and define the species I"(x’, x", y', y") of closed normal terms with type
symbot I'(x', x", ',-¥") by the proof condition

if x’ is a closed normal term with type symbol A’ and x" is a
proof of A"(x"), then r"(x’,x") is a proof of I"(x', x", x’,

X" r{x).

Clearly, I' and I" so defined take closed normal terms x’ and y’ with type
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symbol A’ and proofs x” and y" of A"(x') and A"(y") into a closed normal
term with type symbol V, such that I(x', y') red I'(x", x", y', ¥") and an

n™ order species of closed normal terms with type symbol

I'(x’',x",y',y"), respectively.
I-introduction. For a closed normal term x' with type symbol A’ and a
proof x" of A"(x"), we put
rr(xr, xy) = F(x'),

which is 2 closed normal term with type symbol I'(x’, x", x', x") =g
I(x’, x")ysuch that r(x"red #'(x’', x"}, and let r" be the function introduced
in the previous paragraph which takes x’ and x" into a proof of
Iﬂ(xf, x.’l’ xl’ xn’.’)(r(xl')).

I-elimination. If c[x]& C[x, x, r(x)] depends on the variable x € A
and the function constant f has been introduced by the schema
f(x, x, r(x}) conv cfx}],
we put
fl(xl‘, x.'!, xl, xﬂ, r(xn'), r”(xl" x”)) :def Cf[xl', x”]’
‘fﬂ(xf, xlr, xl, xﬂ, r(x-')’ rh'(xl', x.'l)) =de[ Ci’f{x!’ xh’].
Since
C[x, X, r(x)]f = dof Cf[xf’ xﬂ', xf, xll’, I,,(xr}, ru(xr, xlr)],
C[x’ X, r(x)]”(c {x}l) = def C”{xr; x”s x‘: x"s r(xl)5 r”(xls x”)]
Frixt, x"x', x" r(x), r'(x’, x")),
fx', x',r(xred clxlred ¢'[x', x"]
= ger f’(x’, xu’ xy, x”, r(xr)', rrr(xl’ x")),
the functions f’ and f” take closed normal terms x’ and y' with type
symbaol A, proofs x” and v” of A"(x") and A"(y"), respectively, a closed
normal term z’ with type symbol I'(x’, x”, y', ¥") =4t I{x', y') and a proot
z" of I"(x', x",y', y"}(z') into a closed normal term with type symbol
C'ix’', x", ', ¥", 2, 2"] such that
f(x." yl’ ZI) red f’(xJ, xl'l, yf} y", Zl‘, Z")

and a proof of C"[x',x",y",¥",z".z"[(f'(x',x", y',¥", 2", 2"), respec-
tively.
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I-conversion. If a € A and the function constant f has been intro-
duaced by the above schema, then

fla, a,7(a)) =z f'(a’, a", a’, a”, r(a’), r'(a’, a")
=wrc'la’, a"l =4z clal,

f(ﬂ, i, F(G,))” =deff”(ar, ll”, a’, a", r(a’), r”(a’, ﬂ"))
=ar ¢"la’, a"l =qr clal’,

as desired.

N, -reflection. We put
N:« =der Nn

and define the species N7, of closed normal terms with type symbol N, by
the proof condition

m" is a proof of Ni(m) for m =1,..., s
Clearly, N is a closed normal term with type symbol Vi =4 Vs such that
N, red N, and N is a 0" order species of closed normal terms with type
symbel N.. o
Nn-introduction. For m =1, ..., n, we put
Mm' =g B,

which is a closed normal term with type symbol N/, =4 N, such that
m red m', and let m" be the proof of N'i(m') =u N%(m) which enters into
the proof condition for N

N, -elimination. If ¢, & C[1], ..., ¢, € C[n] and the function constant f
has been introduced by the schema

{f(l) cony ¢,

f(n) cc;nv Cay

we put
{f’(l, 1"} = et €1,

f’(n’ n") ~def C:l;
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{ f"(l, 1::) = or CT,

fﬂ(n, nn) = gor Ci:.

CimY =4 C'[m, m"],
CIm (L) =aes C"m, mf;](ff(m, m”)),

f(m)red c., red ¢ =t f (i, "),

for m =1, ..., n, the functions ' and f” take a closed normal term x' with
type symbol N, = N. and a proof x” of Ni(x'} into a closed normal
term with type symbol C'[x’, x"] such that f(x') red f'(x’, x") and a proof
of C"[x', x"|(f'(x', x")), respectively.

N, -conversion. If the function constant f has been introduced by the
above schema, then

flm)Y =au (M, m") =uwr f'(M, M") =ges C iy
fmY =a f'(m', m") =et f'(m, m") =er € 1
for m =1, ..., n, as desired.
N-reflection. We put
N' =4 N,

which is a closed normal term with type symbol Vi =4 V, such that
N red N’, and define inductively the 0" order species N” of closed normal
terms with type symbol N’ =, N by the proof conditions

0” is a proof of N"({()
and

if x' is a closed normal term with type symbol N and x"” is a proof
of N"(x"}, then s"(x’,x") is a proof of N"(s(x")).

N -introduction. We put
OJ el 03

which is a closed normal term with type symbol N’ =4 N such that 0 red
0, and let 0" be the proof of N*(0') =4 N"(0) which enters into the first
proof condition for N”, Similarly, for a closed normal term x' with type
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symbol N' =, N and a proof x" of N "(x"), we put
S1x', 2" =qer 5 (x),

which is a closed normal term with type symbol N’ =4: N such that
s(x')red s'(x', x™), and let s be the function which enters into the second
proof condition for N” and takes x' and x” into a proof of
N(s'(', X)) =aue N*(s (x")),

N-elimination. If ¢ € C[0], d[x, y] € C[s(x)] depends on the variables
X €N and y € C[x], and the function constant f has been introduced by
recursion,

f@®conve,

fls(x)) conv d[x, f(x)],
we define f' and f” by the simultaneous recursions

10,00 =ac',
ff(s(xr), S"(x', xrr)) = ur dl[xr, xll" f.t(xr, xu’), f"(x’, xﬂ')],
f"((}, 0”) = ger C”,

FCs(x), s"(x', xM) =aer d"[x", x", F/{x", x", (a7, xM.

Since

Cl0] = C'[0, 0"],

Cls(x)] =ues C'[s{x"), s"(x", x"],
C[O]"(C r) = ger C”[{), OH](ff(O, OH)),

CLs@I"(d'Le", x", f'(x", x™), f(x’, x)])
=der L8 (x7), 576", (" (s (x7), s"(x", xM)),
FO) red ¢ red ¢ =g (0, 0%)
and, under the induction hypothesis that Flx"yred f'(x’, x"),
flsG'Dred dx’, f(x)] red d[x’, f'(x’, x")]
red d'[x’, x", f'Gx', X7, £, X"V = (s (27D, 5706, £)),
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the functions f* and f" take a closed normal term x' with type symbol
N’ =4¢ N and a proof x” of N"(x") into a closed normal term with type
symbol C'{x’, x"] such that f(x")red f'(x', x") and a proof of C"[x’, x"]
(f'(x', x")), respectively.

N-conversion. if a € N and the function constant f has been intro-
duced by recursion, then

FOY =aee (0,0 =uee

f(s(a)) =ae f'(s(a’), s"(a’, a")
=wt d'[a’, a", f(a’, a"), f(a’, a")] = d[a, f(@)],

f(O)H =t f”(O, Olr) = CJ!,

f(s(a))" =ar f'(s(a’), s"(a’, a")
= or d"[a', all’ff(al, aﬂ),fﬂ(al, a")] = et d[a, f(a)]”,

as required.

V.-reflection. We have already defined V!, and V7, but we also have to
verify that V) =a4V, is a closed normal term with type symbol
Vit =aer Vaur such that V, red V!, which is clearly so, and that V" is an
(n +1)" order species of closed normal terms with iype symbol
Vi =uaa Vi Remember that, for a closed normal term A with type symbol
Vo

Vi(A) =arthe type of n™ order species of closed normal terms
with type symbol A, that is, the type of functions from the closed
normal terms with type symbol A into the n™ universe,

which is an object of the (n + 1)™ universe. Hence V? is indeed an
(n+1)" order species of closed normal terms with type symbol
V:t = det ‘fn-

This finishes the construction of the model of closed normal terms and
thereby the proof of the normalization theorem for closed terms.

3.4. TueorEM. If a and b are closed normal terms such that a
conv b, then a = b, that is, a and b are syntactically identical.

The following proof is due to Peter Hancock. From the construction of
the term model, we know that a red a’ and b red b'. But a closed normal
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term can only reduce to itself, and hence a = ¢’ and b = b’. On the other
hand, a conv b implies &' =, b’ (and a" =4 b", but we do not need that)
and, a fortiori, a' = b'. Hence a =a’'=H'= b as was to be proved.

3.5. THEOREM. If the closed term a converts into the closed normal
term b, then a reduces to b.

We know from the normalization theorem that a red a’ and, by
assumption, that ¢ conv b, where a’ and b are both closed normal terms.
From ared a’ and a conv b, we can conclude a’ conv b. Hence, by the
previous theorem, a’ = b which, together with a red a’, vields a red b as
desired.

3.6. UNIQUENESS OF NORMAL FORM. If the closed term a converts into
the closed normal terms b and ¢, then b = c.

The assumptions a conv b and a conv ¢ imply b conv ¢ and hence, b
and ¢ being closed normal terms, b = c.

3.7. CHURCH-ROSSER PROPERTY. If a and b are closed terms, then
a conv b if and only if there exists a closed term ¢ such that
aredc and b red c.

For systems with a sufficiently simple type structure, like the typed
[ambda’ calculus or the system of Go&del terms, the Church-Rosser
property can be proved by pure combinatorial means. For the present
theory, however, it is an open question whether a combinatorial proof can
at all be given. The following proof, by the Hancock method, uses in an

-essential way the properties of the model of closed normal terms.

We know that areda’ and bred b’. Moreover, a convb implies
a' =4 b'. Hence, if we put ¢ = a’ =4 b’, we can conclude a red ¢ and
b red ¢ as desired.

3.8. DECIDABILITY OF THE CONVERTIBILITY RELATION. For two closed
terms a and b, it can be mechanically decided whether or not a conv b.

This was first proved for the Gédel terins by Tait[22]. The (clearly
mechanical) decision procedure is this: Rediice a and b to their normal
forms a’ and b’ and check whether or not a’ = b’, that is, whether or not
a’ and b’ are-syntactically identical.

3.9. UNIQUENESS OF TYPE SYMBOLS, If a and b are closed terms with
type symbols A and B, respectively, and a conv b, then A conv B
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From the properties of the term model, we know that

areda’, Ared A,
bredb’, B red B,

where a’ and b’ are closed normal terms with type symbols A’ and B,
respectively, and, since a conv b, that @' =..b'. Hence, if we pul

“aet @' =aor B’, ¢ is at the same time a closed normal term with type
symbol A" and a closed normal term with type symbol B’. However, as
remarked in connection with the definition of the closed normal terms, the
type symbol of a closed nofmal term is uniquely associated with it, and
hence A’ = B' so that A conv B as was to be proved.

3.10. CororLARY. If there are closed derivations of A€V, BV,
and A conv B, then m =n

This shows that the order of a closed type symbol is unique. From the
previous theorem, we can conclude that V., conv V,. But V,, and V, are
both closed normal terms, and hence V,, = V,, that is, m = n.

3.11, TrroREM. From closed derivations of a conv b and b € B, we
can find a closed derivation of a €B

This shows that

aconvb beB
acB

holds as a derived rule for closed derivations. To prove it, first find a
closed derivation of a € A for some A by following the derivation of
a conv b. Then, by the uniqueness of type symbols, we can find a closed
derivation of A conv B. Applying the rule for converting a type symbol to
these two derivations,

aEA A conv B
a & B

we get the desired derivation of a € B.

3.12. THROREM. From a closed derivation of a € A, we can find a
closed derivation of A € V, for some n

The proof is by induction on the length of the derivation of @ € A. The
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only rule which causes any difficulty is the rule

acEA A conv B
acBh

The induction hypothesis then ailows us to find a closed derivation of
A €V, for some n. Hence, by the previous theorem and the symmetry of
the convertibility retation, B € V, for the same value of n.

3.13. DECIDABILITY OF THE EPSILON RELATION. It can be mechan -
ically decided whether or not a closed term is a type symbol.
And, given a closed term a and a closed type symbol A, it can be
mechanically decided whether or not a € A

A closed term is a type symbol if and only if the type symbol of its
normal form is syntactically identical with V, for some n =0, 1, ..., and
thére is clearly a mechanical procedure for checking whether or not this is
the case. Similarly, if a is a closed term and A a closed type symbol, then
a <A if and only if the type symbol of the normal form a’ of a is
syntactically identical with the normal form A’ of A, and again this is
something that can be mechanically decided.

The decidability of the epsilon relation shows that the theory of types
satisfies the adequacy condition formulated in (the discussion
following}{15, Problem 10], namely, that it should be recursively decida-
ble whether or not a closed term formally proves a given closed formala
in the hypothetical theory of constructions. This is the formal counterpart
of the experience that we can decide whether or not a purported proof
actually is a proof of a given proposition (in Kreisel’'s words: we
recognize a proof when we see one).

3.14. THrEOREM, I(a, b) is provable, that is, there is a closed term with
type symbol I(a, b), if and only if a conv b

Here, of course, it is supposed that a and b are closed terms with
common type symbol A and that T denotes the identity relation on A. The
sufficiency is trivial, because r{a) is a closed term with type symbol
I(a, a) and a conv b implies I(a, a) conv I(a, b) so that, by the rule for
converting a type symbol, r(a}is a closed term with type symbol I(a. b).
Conversely, suppose that ¢ is a closed term with type symbol I(a, b).
Then ¢’ is a closed normal term with type symbol I(a, b) =uI(a’, b')
which is only possible if a’'=b" and r(a)=¢’. Since ared a’, b red b’
and a' = b’, we can conclude a conv b as desired.

AN INTUITIONISTIC THEORY OF TYPES 117

3.15. THEOREM. A number theoretic function which can be
constructed in the theory of types is mechanically computable

Of course, the fact that there is a not necessarily mechanical procedure
for computing every function in the present theory requires no proof at all
once we have recognized that the axioms and rules of inference of the
theory are consonant with the intuitionistic notion of function, according
to which a function is the same as a rule or method.

By saying that a number theoretic function can be constructed in the
theory of types, 1 mean that there is a closed term f with type symbol
N — N which denotes it. Suppose that we want to find the value of the
function for a certain natural number which is denoted by the numeral m.

Then f(m) denotes the value of the function for this argument, But f(m)

is a closed term with type symbol N and hence, by the normalization
theorem and the fact that the closed normal terms with type symbol N are
precisely the numerals, it reduces to a numeral n. It only remains to
remark that the nmormal form of a term can be found in a purely
mechanical way, that is, by manipulating symbol strings according to
rules which refer solely to their syntactical form and not to their meaning.
Similarly, having formalized the construction of the real numbers (for
example, as Cauchy sequences of rationals) in the theory of types, we can
prove as a corollary to the normalization theorem that every individual
real number which we can construct in the formal theory can be
computed by a machine with any preassigned degree of approximation.
These corollaries show that formalization taken together with the
ensuinfg proof-theoretical analysis effectuates the computerization of
abstract intuitionistic mathematics that above all Bishop[1] and [2] has
asked for. What is doubtful at present is not whether computerization is
possible, because we already know that, but rather whether these
proof-theoretical computation procedures are at all useful in practice. So
far, they do not seem to have found a single significant application.
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