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Preface

These lgctures were given in Padova at the Laboratorio per

Ricerche di. Dinamica dei Sistemi e di Elettronica Biomedica of the

Consiglio Nazionale delle Ricerche during the month of June 1980.

I am indebted to Dr. Enrico Pagello of that laboratory for the ob-
portunity of so doing. The audience was made up by philosophers,
mathematicians and computer scientists. Accordingly, I tried to say
something which might be of interest to each of these three cat-
egories. Essentially the same lectures, albeit in a somewhat im-
proved and more advanced form, were given later in the same year
as part of the meeting on Konstruktivé Mengenlehre und fypentheorie
which was organized in Munich by Prof. Dr. Helmut Schwichtenberg,

te whom I am indebted for the invitation, during the week 29 Sep-

- tember - 3 October 1980.

The main improvement of the Munich';ectures, as compared with
those given in Padova, was the adoption of a systematic higher level

(Ger. Stufe) notation which allows me to write simply

[1(a,B), Z(A,B), W(A,B), A(b),
E(c,d), D(e,d,e), R(ec,d,e), T(c,d)

instead of

(IMMx e A)B(x), (Ex € 4)B(x), (Wx € A)B(x), (O\x)b(x),
E(e,(x,y)d(x,y)), D(e,(x)d(x),(y)e(y)), R(e,d,(x,y)e(x,y)),
T(e,(x,y,z)d(x,y,2)),

respectively. Moreover, the use of higher level variables and con-
stants makes it possible to formulate the elimination and equality

rules for the cartesian product in such a way that they follow the



same pattern as the elimination and equality rules for all the other

type forming'operations. In their new formulation, these rules read
TT-elimination

(y(x) € B(x) (x e 4))

ce TT(A,B) a(y) e c(y))

F(e,d) € C(e)
and
T[—equality

(x e A) (y(x) € B(x) (x e A))

b(x) € B(x) d(y) e c(\(y))

FOW(b),d) = d(b) € C(X\(b))

respectively. Here'y is a bound funbtion variable, F is a new non-
canonical (eliminatory) operator by means of which the binary ap-

- plication operation can be defined, putting

Ap(c,a) = F(e,(y)y(a)),

and y(x) € B(x) (x € A) is an assumption, itself hypotheticél, which
has been put within parentheses to indicate that it is being dis-
charged. A program of the new form F(c,d) has value e provided ¢ has
value A (b) and d(b) has value e. This rule for evaluating F(ec,d)
reduces to the lazy evaluation rule for Ap(c,a) when the above defi-
" nition is being made. Choosing C(z) to be B(a), thus independent of
z, and d(y) to be y(a), the new elimination rule reduces to the old

one and the new equality rule to the first of the two old equality

s

s

ruleé}'Moreover, the second of these, that is, the rule

ce IT(A,B)

¢ = (Ax)Ap(ec,x) € T1(a,B)
can be derived by means of the I-rules in the same way as the rule

ce L (A,B)

e = (ple),q(e))) € T (A,B)

is.derived by way of example on p. 62 of the main text. Conversely,
the new elimination and equality rules can be derived from the old

ones by making the definition
F(e,d) = d((x)Ap(e,x)).

So, actually, they are equivaleqt.

It only remains for me to thank Giovanni Sambin for having
undertaken, at his own suggestion, the coneiderable work of writing
and typing these nofes, thereby making the lectures accessible to a

wider audience.

Stockholm, January 1984,

Per Martin-Lof
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Introductory remarks

:Mathematical logic and the relation between logic and mathematics

have been interpreted in at least three different ways:

(1) mathematical logic as symbolic logic, or logic using mathe-

matical symbolism;

(2) mathematical logic as foundations (or philosophy) of mathe-

matics;
(3) mathematical logic as logic studied by mathematical methods,

as a branch of mathematics.-

We shall here mainly be interested in mathematical logic in the second

sense. What we shall do is also mathematical logic in the first sense,

- but certainly not in the third.

‘The principal problem that remained after Principia Mathematica
was completed was, according to its authors, that of justifying ihe
axiom of reducibility (or, as we would now say, the impredicative com-
prehension axiom). The ramified theory of types was predicative, but
it was not sufficient for deriving even elementary parts of analysis.
So the axiom of reducibility was added on the pragmatic ground that it
was needed, although no satisfactory justification (explanation) of it
could be provided. The whole point of the ramification was then lost,
so that it might just as well be abolished. What then remained was
the simple theory of types. Its official Justification (Wittgenstein,

Ragsey) rests on the interpretation of propositions as truth values

“and propositional functions (of one or several variables; as truth

functions. The laws of the classical propositional logic are then

clearly valid, and so are the quantifier laws, as long as quantifica-

tion is restricted to finite domains. However, it does not seem poss-

ible to make sense of quantification over infinite domains, like the



domain of natural numbers, on this inéerpretation of the notiqns of
proposition and propositional function. For this reason, among others,
what we develop here is an intuitionistic theory of types, which is
also predicative (or ramified). It is free from the deficiency of
Russell's ramified theory of types, as regards the poésibility of de-
veloping elementary parts of mathematics, like the theory of real num-
bers, because of the pfesence of the operation which allows us to form
the cartesian product of any given family of sets, in particular, the
set of all functions from one set to another.

In two areas, at least, our language seems to have advantages-
over traditional foundational languages. First, Zermelo-Fraenkel set
theory cannot adequately deal with the foundational problems of cat-
egory theory, where tﬁe category of all sets, the category of all
groups, the.bategory of functors from one such category to another
etc. are considered. These problems are coped with by means of the
distinction between sets and categories (in the logical or philosophi-
cal sehse, not in the sense of category theory) which is made in intu-
itionistic type theory. Second, present logical symbolisms are inad-
equate as programming languages, which explains why computer scien-
tists have developed their own languages (FORTRAN, ALGOL, LISP,
PASCAL, ...) and systems of proof rules (Hoare1, Dijkstraz, ...). We

3

have $hown elsewhere~ how the additional richness of -type theory, as

compared with first order predicate logic, makes it usable as a pro-

gramming language.

! C. A. Hoare, An axiomatic basis of computer programming, Com-'
munications of the ACM, Vol. 12, 1969, pp. 576-580 and 583.

£ E. W. Dijkstra, A discipline of Programming, Prentice Hall,
Englewood Cliffs, N.J., 1976. :

3 P. Martin-Lof, Constructive mathematics and computer program-
ming, Logic, Methodology and Philosophy of Science VI, Edited.by
L. J. Cohen, J. Los, H. Pfeiffer and K.-P. Podewski, North-Holland,
Amsterdam, 1982, pp. 153-175. . ’
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:.presentations of first order logic

‘which is

Propositions and Judgements

Here the distinction between proposition (Ger

. . . Satz) and asser-
tion or judgement (Ger.

Urteil) is eéssential. What we combine by means

of the logical pperapions (l,>, &, Vv,V ,3) and hold to be true are

propositions. When we hold a proposition to be true, we make a Jjudge

ment :

proposition c’ Jjudgement

In parti . i
particular, the premisses and conclusion of a logical inference are

Judgements.

The dist;nction between propositions and judgements was clear

from Frege to Principia. These notions have later been replaced by the
formalistic notions of formula and theorem (in a formal sysﬁem) re
g ’ -

speeti > ‘
peetively. Contrary to formulas, propositions are not defined induc-

ti .
ively. So to speak, they form an open concept. In standard textbook

» We can distinguish three quite

. separate steps:

(1) inductive definition of terms and formulas
’
(2) specification of axioms and rules of inference
’

(3) semantical interpretation.

F i v
ormulas and deductions are given meaning only ‘through semantics
03 ’

usually done following Tarski and assuming set theory

What we do here is meant to be closer to ordinary mathematical
Eo—— . :
practice. We will avoid keeping form and meaning (content) apart. In

stead
Wwe will at the same time display certain forms of judgement and

i Y :
nference that are used in mathematical proofs and explain. them se

‘ man-
tically. Thus we make explieit what is USU3L1lY implicmstélw &ate o o



granted. When one treats logic as any other branch of mathematics, as
in the metamathematical tradition originated by Hilbert, such judge-

ments and inferenceS'are only partially and formally represented in

the so-called object 1ah5uage, while they are implicitly used, as in

any other branch of mathematics, in the so-called metalanguage.

Our main aim is to build up a system of formal rules representing
in the best possible way informal (mathematical) reasoning. In the
usual natural deduction style, the rules given are not quite formal.

For instance, the rule

A

AV B

takes for granted that A and B are formulas, and only then does it say
that we can infer A v B to be true when A is true. If we are to give a

formal rule, we have to make this explicit, writing

A prop. B prop. A true
A v B true
or
A, B prop. ~ A

+AVB

where we use, like Frege, the symbol F to the left of A to signify
that A is true. In our system of rules, this will always be explicit;
A'rule of inference is justified by explaining the conclusioﬁ on
the assumption that the premisses are known. Hence, before a rule of
inference can be justified, it must be explained what it is that we
must know in order to have the right to make a judgement of any one

of the various forms that the premisses and conclusion can have.

L

~We use four forms of judgement:

(1) A ié a seé (abbr. A set),

(2) A and ? are equal sets (A = B),

(3) a is .an element of tﬂe sgt A (ave a),

(4) a and b are equal elements of the set A (a = b € A).

(If we read e literally as écr(', then we might write A € Set,

.A = B € Set, a € E1(A), a = b € E1(A), respectively.) Of course, any
syntactic variables could be used; the use of small letters for el-
ements and capital letters for sefs is.only for éonvenience. Note tha
in ordinary set theory, a € b and a = b are propositions, while they
are judgements here. A Judgemgnt of the form A = B has no meaning un-
less we already know A and B to be sets. Likewise, a judgement of the
form a € A presupposes that A is a set,'and‘a judgement of the form
a = b € A presupposes, first, that A is a set, and, second, that a an
b are elements of A.. '

Each form of judgement admits of several different readings, as
in the table: '

A set a €Al

A is a set a is an element of the set A A is nonempty

A is a proposition a is a proof (construetioﬁ) of A is true

the proposition A

A is an intention a is a method of fdlfilling A is fulfillabl

(expectation) (reélizable)

(realizing) the intention
(expectation) A

A is a problem a is a method of solving the

(task) problem (doing the task) A

A is solvable




The second, logical interpretation is discussed toghether with rules
y .
below. The third was suggested by Heyting and the fourth by Kolmo-

gorovS. The last is very close to programming. "a is a method ..." can

" be read as "a is a program ...". Since programming languages have a

formal notation for the p}ogram a, but not for A, we complete the sen-
tence with "... which meets the specification A". In Kolmogorov's in-
terpretation, the word problem refers to something to be done and the
word program to how to do it. The analogy between the first and the
second interpretation is implicit in the Brouwer-Heyting interpret-
ation of the logical constants. It was made more explicit by Curry.ahd
Feys6, but only for the implicational fragment, and it was extended to
intuitionistic first order arithmetic by Howard7. It is the only known
way of interpreting intuitionistic logic so that tﬁe axiom of choice
becomes-valid.

To dlstlnguish between proofs of Judgements (usually in tree-like
form) and proofs of propositions (here identified with elements, thus
to the left of € ) we reserve the word constructlon for the latter and

use it when confusion might occur.

. A. Heyting, Die intuitionistische Grundlegung der Mathematik,
Erkenntnis, Vol. 2, 1931, pp. 106—115.

2 A. N. Kolmogorov, Zur- Deutung der intuitionistischen Logik,
Mathematische Zeitschrift, Vol. 35, 1932, pp-. 58—65.

8 H. B. Curry and R. Feys, Combinatory Logic, Vol 1, North-
-Holland, Amsterdam, 1958, pp. 312-315.

7 W. A. Howard, The formulae-as types notion of construction, To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, Academic Press, London, 1980, pp. U479-490.

A
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Explanations of the forms of judgement

For each one of the four forms of judgement, we now explain what
a judgement of that form means. We can explain what a judgement, saj)
of the first form, means by answering one of the following three ques

tions:

What is a set?

What is it that we must know in order to have the right to judg:

something to be a set?

What does a judgement of the form "A is a set"™ mean?

Tﬁe first is the ontological (ancient Greek), the second the epis-
temological (Descartes, Kant, ...) and the third the semantical (mod-
ern) way of posing essentially the same question. At first sight, we
éould assume that a set is define@ by prescribing how its elements
are formed. This‘we do when we say that the set of natural numbers

_N is defined by giving the rules:

ae N
0eN

a'E'N

by which its elements are constructed. However, the weakness of this

definition is clear: 1010, for instange, though not obtainable with

the given rules, is clearly an element of N, since we know that we

" can bring it to the form a' for some a € N. We thus have to distin-

‘Buish the elements which have a form by which we can directly see
that they are the result of one of the rules, and -call them canoni-

cal, from all other elements, which we will call noncanonical.



But then, to be able to define when two noncanonical elements are
equal, we must also prescribe how two equal canonical elements are

formed. So:

(1) a set A is defined by prescribing how a canonical element
qf A is formed as gell és how two equal canonical elements of

A are formed.

This is the explanation of the meaning of a judgement of the form

A is a set. For example, to the rules for N above, we must add

a b e N

0=0¢€N and —_—
a' = b'e N

To take another example, A x B is defined by the rule

ac A beB’

(a,b) € A x B
which prescribes how canonical elements are formed, and the rule

a=ceAh b=de8B

(a,b) = (¢,d) € A xB

by means of which equal canonical elements are formed. There is no
limitation on the prescription defining a set, except that equality
between canonical elements must always be defined in such a way és
to be reflexive, symmetric and transitive.

Ndw suppose we know A and B to be sets, that is, we know how
canonical eiements and equal canonical elements of A and B are formed.

Then we stipulate:

(2) two sets A and B are equal if

a €A . aeh - aeB
(that is, and )
a€B aeB ael
and
a=beA
a=beB

for arbitrary canonical elements a, b.

This is the meaning of a judgement of the form A = B.
- When we explain what an element of a set A is, we must assume

we know that A is a set, that is, in particular, how its canonical

-elements are formed. Then:

(3) an element a of a set A is a method (or program) which, whe

executed, yields a canonical element of A as result.

This is the meaning of a judgement of the form a € A. Note that here
we assume the notioh of method as primitive. The rules of computatic
(execution) of the present 1anguage'will be such that the computatic
of an element a of a set A terminates with a value b as soon as the
outermost form of b tells that it is a canonical element of A (norme
order or lazy evaluation). For instance, the computation of 2 + 2 €

gives the value (2 + 1)', which is a canonical element of N since

2 + 1 € N.

Finally:

(4) two arbitrary elements a, b of a set A are equal if, when

executed, a and b yield equal canonical elements of A as resulf



This is the meaning of a judgement of the form a = b € A. This defi-
nition makes good sense since it is part of the definition of a set
what it means for two canonical elements of the set to beé edual.

Example. If e, f-¢ A X B, then e and f are methods which yield
canonical elements (a,b), (c,d) € A x B, respectively, as results,
and e = f € A x B if (a,b) = (¢,d) € A X B, which in turn holds if
a=ce Aand b = d ¢ B;

Propositions

Classieally! a proposition is nothing but a truth value, that
is, an element of thé set of truth values, whose two elements are
the true and the false. Because of the difficulties of justifying
the rules for forming propositions by means of quantification over
infinite domains, when a proposition is understood as a truth value,
this explanation is rejec@ed by the intuitionists and replaced by

saying that’

a proposition is defined by laying down what counts‘as a proof

of the proposition,
and that

‘a proposition is true if it has a proof, that is, if a proof of

it can be givena,

Thus, intuitionistically, truth is identified with provability, thougt

" of course not (because of_GGdel's incompleteness theorem) with deriva-

bility within any particular formal system.
The explanations of the meanings of the logical operations, whict
fit together with the intuitionistic conception of what a proposition

is, are given by the standard table:

4 D. Prawitz, Intuitionistic logic: a philosophical challenge,
Logic and Philosophy, Edited by G. H. von Wright, Martinus Nijhoff,
The Hague, pp. 1-10. ’



-consists of

a proof of the proposition

L
‘A& B
AVB

ADB

(Vx)B(x)

(3 x)B(x)

a proof of A and a proof of B
a proof of A or a proof of B

a method which takes any proof
of A into a proof of B

a method which takes an arbitrary
individual a into a proof of B(a)

an individual a and a proof of
B(a)

the first line  of which should be interpreted as saying that there

is nothing that counts as a proof L .

The above table can be made more expiicit by saying:

a proof of the proposition

has the form

L
A& B
AV B
ADB

(V x)B(x)

(3 x)B(x)

(a,b), where a is a proof of A
and b is a proof of B

i(a), where a is a proof of A,
or j(b), where b is a proof of B

(Ax)b(x), where b(a) is a proof
of B provided a is a proof of A

(Xx)b(x), where b(a) is a proof
of B(a) provided a is an individual

(a,b), where a is an individual
and b is a proof of B(a)

As it stands, this table is not strictly correct, since it shows

proofs of canonical form 6n1y.'An arbitaby'pboof, in analpgy with an

arbitrary element of a set, is a method of producing a proof of ca-
nonical form. . ) .: .

If we take seriogsly the idea that a pfoéosition is:defined by
laying down how its canonical proofé are formed (as in the second
table above) and accept that a set is define& by prescribing how its
canonical elémenté are formed, then it is clear that it would only
lead to unnecessary duplication to keep the.nbtions ofvproposition
and set (and the associated notions of proof. of a probosition‘and el-
ement of a set) apart. Instead, we sihply identify them, that ;s,
treat them as one and the same notion. This is the formulae;as-types
(propositions-as-sets) interpretation on which intuitionistic type

theéry is based. )



Rules of equality

We now begin to build up a system of rules. First, we give the
following rules of equality, which are easily explained using the

fact that they hold, by definition, for canonical elements:

~ Reflexivity
a €A A set
a=ae€Ah A=A
Symmetry
a=DbeA A =B
b=aeAl B = A
Transitivity
a=b €A b=ce€eA A =B B=2C
a=c¢c €A A=C

Fbr instance, a detailed explanation of transitivity is: a = b € A
means that a and b yield canonical elements d and e, respectively, and
that d = e € A. Similarly, if c yields f, e = f € A. Since we assume
transitivity for canonical elements, we obtain d = f € A, which means
that a = ¢ ¢ A.

The meaning of A = B is that

aeAl

w

€

Y

- 15 =

and

a=>b eA

a=beB

for a, b canonical elements of A and B. From the same for B = C, we

also obtain

and

for a, b canonical elements, which is the meaning of A = C.

In the same evident way, the meaning of A = B Jjustifies the

rules:

Equality of sets




Hypothetical judgements and substitution rules

The four basic forms of judgement are generalized in order to
expresé'also hypothetical judgements; i.e. judgements which are made
under assumptions. In this section, we treat the case of one such
assumption. So assume that A is a set. The first form of judgement

is generalized to the hypothetical form
(1) B(x) set (x €A)

which says that B(x) is a set under the assumption x € A, or, better,
that B(x) is a family of sets over A. A more traditional notation

is {Bx}x caOf {Bx:‘x e A} . The meaning of a judgement of the form
(1) is that B(a) is a set whenever a is an element of A, and also
that B(a) and B(ec) are equal sets whenever a and c are equal elements
of A. By virtue of this meaning, we immédiately see that the follow-

ing substitution rules are correct:

Substitution
(x € A) ) (x € A)
acAh B(x{ set a=ceAh B(x) set
B(a) set B(a) = B(e)
The notation
x €A
B(x) set

only recalls that we make (have a proof of) the judgement that

B(x) is a set under thg assumption x € A, which does not mean'that
we must have a derivation within'any particular formal system (like

the one that we are in the process of building up). When an assumption

x € A is discharged by thé'application of a rule, we write it inside

brackéts.

The méaning of a'hybothetical judgement of the form

(2) B(x) = b(x) (x €4A)

_which says that B(x) and D(x) are equal families of sets over the

set A, is that B(a) and D(a) are equal sets for any element a of A
(so, in particular, B(x) and D(x) must be families of sets over A).

Therefore the rule

- Substitution

(x € A)
a€A B(x) = D(x)
B(a) = D(a)

is correct. We can now derive the rule

(x € 4)
a=ceh B(x) = D(x)

B(a). = D(e)

from the above rules. In fact, from a i'c:e.A and B(x) set (x € A),
we obtain B(a) = B(c) by the second substitution rule, and from c € A,
which is implicit in a = ¢ € A, B(e) = D(c) by the third substitution

rule. So B(a) = D(e) by transitivity.



A hypothetical judgement of the form
(3) b(x) € B(x) (x € A)

means that we know b(a) to be an element of the set B(a) assuming we
know a to be an element of the set A, Ehd that b(a) = b(c) € B(a)
whenever a and ¢ are equal elements of A. In other words, b(x) is
an extensional function with domain A and range B(x) depending on

the argument x. Then the following rules are justified:

Substitution
(x € A) (x € A)
acAh b(x) € B(x) a=cel b(x) e B(x)
b(a) € B(a) , b(a) = ble) € Bla)

Finally, a judgement of the form

(4) b(x)

d(x) € B(x) (x € A)

means that b(a) and d(a) are equal elements of the set B(a) for any

element a of the set A. We then have
Substitution

(x € 4)

aeh b(i) = d(x) € B(x)

b(a) = d(a) € B(a)

which is the last substitution rule.

Judgements with more than one assumpfion and contexts

We may now. further generalize judgements to include hypothetical
judgements with an arbitrary number n of assumptions. We explain their
'meéning by induction, that is, assuming we ﬁnderstand the meaning of
judgements with n-1 aésumptions. So assume we. know that

A1.is a set,

A2(X1)'is a family of sets over A,
A3(x1,x2) is a family of sets with two indices x, € A, and

1 1
X, € A2(x1),

An(x1q...,xn_1) is a family of sets with n-1 indices X, € A1,
X € Ap(Xy)s wony Xy g € Ay g (Xg0eeiaxpy o)

Then a judgement of the form

A1) A(x1,...,xn)'set (x1 € A, X, € Az(x1), o e g

X, € An(x1,...,x

))

n-1

means that A(a1,...,an) is a set whenever a, 2 € Az(a1), wiey

a e An(a1,...,an_1) and that A(a1,...,an) = A(b1,....,bn)

€ A1, a
whenever a, = b1 e Al’ ey @p = bn e An(a1,...,an_1). We say that
A(x1,...,xn) is a family of sets with n indices. The n assumptions in
a judgement of the form (1) constitute what we call the context, which
plays a role analogous to the sets of formulae I' , A (extra formulae)
appearing in Gentzen sequents. Note also that any initial’segment of a

context is always-a context. Because of the meaning of.a hypothetical



judgement of the form (1), we see that the first two rules of substi-

tution may be extended to the case of n assumptions,and we understand
these extensions to be given. .
It is by now clear how to explain the meaning of the remaining

forms of hypothetical judgement:

(2) Alxy,e.00x)) =fB(x1,...,xn) (x, € Ayy ooy

x € An(x1,...,x

))

;o n-1
(equal families of sets with n indices),

3) a(x1,...,xn) € A(x1,...,xn) (x; € Ayy oney ‘
))

x € An(x1,...,xn_1

(function with n arguments),

(u) a(x“v,,,,,xn) = b(x1,...,xn) € A(X.I,..-yxn)

(x1 e A ))

10 ceer Xp e An(x1,...,x

(equal functions with n arguments),

n=-1

and we assume the corresponding substitution rules to be given.

Sets and categories

A category is defined by explaining what an object of the cat-

egory is and when two such objects are equal. A category need not be

" a set, since we can grasp what it means to be an object of a given

category even without.exhaustive rules for forming its objects. For
{nstance, we now grasp what a set is and when two sets are equal, so
we have defined the category of sets (and, by the same token, the
category of propositions), -but it is not a set. So far, we have de-

fined several categories:
the category of sets (or propositions),

the category of elements of a given set (or proofs of a proposi-

tion),
the category of families of sets B(x) (x € A)‘over a given set A4,

the category of functions b(x) € B(x) (x € A), where A set,
B(x) set (x € A),

the category of families of sets C(x,y) (x € A, y e B(x)), where
A set, B(x) set (x € A),

the category of functions c(x,y) € C(x,y).(x € A, y € B(x)), where
A is a set, B(x) (x € A) and C(x,y) (x € A, y € B(x)) families of

sets,
ete.

In addition to these, there are higher categories, like the category
of binary functions which take two sets into another set. The function

X , which takes two sets A and B into theif cartesian product A x B,



is an example of an object of that category.

We will say object of a category but element of a set, which re-
flects the difference between categories and sets. To defiﬁe-a cat-
egory it is not necessary to prescribe how its objects are fo}ﬁed,
but just to grasp what an (arbitrary) object of the category is. Eéch
set determines a category, namely the category of elements of the set,
but not conversely: for instance, the category of sets and the c;t—
egory of propositions are not sets, since we canhot describe how all
their elements are formed. We can now say that a judgement is a state-
ment to the effect that something is an object of a category (a € A,

A set, ...) or that two objects of a category are equal (a = b € A,
A=B, ...
. What about the word type in the logical sense given to it by
Russell with his ramified (resp. simple) theory of types? Is type syn-
onymous with category or with set? In some cases with thé one, it
seems, and in other cases with the othe}. And it is this confusion of
two different concepts which has led to the impredicativity of the
simple theory of types. When a type is defined as the fange of signi-
ficance of a propositional function, so that types are what the
quantifiers range over, then it seems that a type is the same thing
‘as a set. On the other hand, when one speaks about the simple types

of propositions, properties of indiQiduals, relations between individ-
uals etec., it seems as if types and categories are the same. The im-
portant difference between the ramified types of propositions, prop-
erties, relations etc. of some finite order and the simple types of
all propositions, properties, relations etec:. is precisely that the
ramified types are (or can be understood as) sets, so that it makes
sense to .quantify over them, whereas the simple types aré mere cat-
egories. v

For example, BA is a set, the set of functions from the set A to

~

= a3 -

the set B (BA will be introduced as an abbreviation for (Mx e A)B(
when B(x) is constantly equal to B). In particular, {0,1}A ‘
but it is not the same thing as & (A)
reason that BA

is a se
, which is only a category. Th
can be construed as a set is that we take the notion
of function as primitive, instead of defining a function as a set o
ordered pairs or a binary. relation satisfying the usual existence a
gniqueness conditions, which would make it a category (like (?(A))
instead of a set.

When one speaks about data types in computer science, one migh

just as well say data sets. So here type is always synonymous with
set and not with category.



‘General remarks on the rules

We now start to give the rules for the different symbols we use.
We will follow a common pattern in giving them. For each operation

we have four rules:
" set formation,
introduction,
elimination,
equality.

The formation rule says that we can form a certain setv(proposition)
from certaiﬁ other sets (propositions) or families of sets (proposi-
tional functions). The introduction rules say what are the canonical
elements (and equal canonical elements) of the set, thus giving its
meaning. The elimination rule shows how we may define functions on thé
set defined by the intrpduction'rulés. The equality rules relate the
introduction and eliminaiion rules by showing how a function defined
by means of the elimination rulé operates on the canonical elements
of the set which are generated by the introduction rules.

In the interpretation of sets as propositions, the formation
rules are used to form propositions, introduction and elimination
rules are like those of Gentzeng, and the equality rules correspond

to the reduction rules of Prawitz10

9 G. Gentzen, Untersuchungen uber das logische Schliessen,
Mathematische Zeitschrift, Vol. 39, 1934, pp .176-210 and 405-431.

e D. Prawitz, Natural Deduction, A Proof-Theoretical Study,
Almgvist & Wiksell, Stockholm, 1965.

T &) ™

We remark here also that to each rule. of set formation, intro-

duction and elimination, there corresponds an equality rule, which

allows us to substitute equals for equals.

The rules should be rules of immediate inference; we cannot

further analyse them, but only explain them. However, in the end; no

explanation can substitute each individual's understanding.
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Cartesian product of a family of sets

Given a set A and a family of sets B(x) over the set A, we can

form the product:
TI-formation

(x € A) (x € A)

A set B(x) set" A=C B(x) = D(x)

(Tx e A)B(x) set (TIx e a)B(x) = (Tlx e C)D(x)

The second rule says that from equal arguments we get equal valuesf
The same holds for all other set forming operations, and we will never
spell it out again. The conclusion of the first rule.is that something
is a set. To understand which set it is, we must know how its canogi—
cal elements and its equal canonicai elements are formed. This is ex-

plained by the introduction rules:
T1-introduction

(x € A)

b(x) € B(x)

Ax)b(x) € (TIx e A)B(x)

(x € A)

b(x) = d(x) € B(x)

Ox)b(x) = Ax)d(x) € (TIx € A)B(x)

Note that these rules introduce canonical elements and equal canoni-
cal elements, even if b(a) is not a canonical element of B(a) for
a € A. Also, we assume that the usual variable restriction is met,
i.e. that x dées not appear free in any assumption except (those of
the form) x € A. Note that it is néccessary to understand that
b(x) € B(x) (x e A) is a function to be able to form the canonical
element (Ax)b(x) € (llx € A)B(x); we could say that the latter is a
ﬁame.of the former. Since, in general, there are no exhaustive rules
for generating all functions from one set to another, it follows that
we cannot generate inductively all the elements of a set of the form
(I'lx € A)B(x) (or, in particular, of the!form’BA, like NN)‘

We can now justify the second rule éf set formation. So let
(Ax)b(x) be a canonical element of (Ilx é A)B(x). Then b(x) € B(x)
(x € A). Therefore, assuming x € C we get x € A by symmetry and equal-
ity of sets from the premiss A = C, and hence b(x) € B(x). Now, from
the premiss B(x) = D(x) (x € A), again by equality of sets (which is
assumed to hold also for families of sets), we obtain b(x) € D(x),

and hence (Ax)b(x) € (ITx € €¢)D(x) by Tl-introduction. The other di-
rection is similar.

A =C A=C
(x € C) C=A (x €C) C=A
x € A x € A
b(x) € B(x) ‘ B(x) = D(x)
b(x) € D(x) |

Ax)b(x) e (JTx € C)D(x)
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We remark that the above derivation cannot be considered as a formal

proof of the second T1-formation rule in type theory itself since

there is no formal rule of proving an equality between two sets which
corresponds directly to the explanation of what such an equality means.

We also have to prove that

Ou)b(x) = (x)dx) € (Tix e MB(X)

Ox)b(x) = Ax)d(x) € (Tix € C)D(x)

under the same assumptions. So let Ox)b(x) and (\x)d(x) be equal

canonical elements of (Tx e A)B(x). Then b(x) = d(x) € B(x) (x € RA),

and therefore the derivation

A=C A=2C
(x € C) ::_:—_; (x €C) c =/A/
x €A x €A
b(x) = d(x) € B(x) BGO = D)

b(x) = d(x) € D(x)

Ab(x) = Gxaeo e (Thx € ¢)Dp(x)

shows that (Ax)b(x) and (Xx)d(x) are equal canonical elements of

(Tlx € C)D(x)-
T1-elimination

c e (Mx e BB(x) acA

Ap(c,a) € B(a)

c=d € (Tlx e A)B(x) a=Db €A

Ap(c,a) = Ap(d,b) € B(a)

We hfve to.explain the meaning of the new constant Ap (Ap f
App%lcation). Ap(c,a) is a method of obtaining a eanonicpl o
B(a), and we now explain how to execute it. We know thata siement ot
c € (TIx € A)B(x), that is, that ¢ is a method which yields
cal element (Ax)b(x) of (ITx € A)B(x) as result. Now take o
subs?itute it for x-in b(x). Then b(a) € B(a). Caleulatingab: : -
obta17 as result a canonical elemgnt of B(a), as required Ofa -
in this explanation, no concrete computation is carried o;t~ 'course,
the character of a thought experiment (Ger. Gedankenexperim' 1t P
use Ap(c,a) instead of the more common b(a) to distinguish in o
of applying the binary application function Ap to the two S
and é frog the reéult of applying b to a. Ap(c,a) correspoigju:ents )
application operation (ca) in combinatory 1ogic. But reéall tha: :he
n

combinato
ry logic there are no type restrictions, since one c
ways form (ca), for any c and a. e

I-equality

(x € A)

aehl - b(x) e B(x)

Ap((Ax)b(x),a) = b(a) € B(a)

¢ e (Mx e A)B(x)

c = (Ax)Ap(c,x) € (INx € A)B(x)

The first 3 .
equality rule shows how the new function Ap operates’ on the
canonica | eme ‘of I lx €A B x). Think f J\x b e o
[ * 1 elements ( ) ( ) ; i o ( ) (x) as a nam f
-

the program b(x). Ihel"‘ the first rule says that applying the name of
:

a progra ) I ) e ro-
g m to an al‘gument yields the same result as executin th

g ith r P o e
arg ; : Y, ‘ ul is i
ram wit that rgument as input Similarl the second r e needed
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ich we know only
notation Ap(e,x), for 2 program of whi
to obtain a 5

Th eco d e ca e eX alned as follo . R a a
secon rul nb pl A WS ec 11 th t
the name C. e

two elel]]ellbs re e ual i f they Yleld equal canon cal element as -
1 s re
a q

b(x) € B(x)
S ppose ¢ yields the result Ax)b(x), where
sults. So su

: t to prove is
i onical, what we wan
i Ow)Ap(e,x) is can
(x € A). Since

; ] e A
Ax)b(x) = O\x)Ap(c,x) € BO) (x )
d
inbrdduction for equal elements, we nee
This means b(a) = Ap(c,a) € B(a)
\x)b(x) and hence

By the rule of n

b(x) = Ap(e,x) € B(x) (x € A).

rovi ded a e A B t tru since ¢ Y elds
P ut his is e, iel
.

Ap(c,a) yields the same value as v(a)-
y

The rules for roducts contain the rules for B which is the
P ’

3 A
set of un o to the s B f .to
ct we take B
- f ctions from the set A h et . In acvu,
ncepb of defi-
e (‘ Ve A)B where B does not depend on X-. Here the co
b ( x ’

nitional equality is useful.

" In fact,

Definitional equality

Definitional equality is intensional equality, or equality of

meaning (synonymy). We use the symbol = or Z def (which was first

introduced by Burali-Forti). Definitional equality = is a relation

between linguistic expressions; it. should not be confused with equal-

ity between objects (sets, elements of a set etc.) which we denote
by =. Definitional equality is the equivalence relation generated by
abbreviatory definitions, changes of bound variables and the principle.

of substituting equals for equals. Therefore it is decidable, but not

in the sense that a = bV - (a = b) holds, simply because a = b is
not a proposition in the sense of the present theory. Definitional

equality can be used to rewrite expressions, in which case its decid-

ability is essential in checking the formal correctness of a proof.

to- check the correctness of an inference like

A true B true

A & B true

for instance, we must in particular make sure that the occurrences of
the expressions A and B above the line and the corresponding occur-
rences below are the same, that is, that they are definitionally

equal. Note that the rewriting of an expressioh is not counted as a

| formal inference.


glimming


glimming



Applications of the cartesian. product

’ . A
First, using definitional equality, we can now define B by

putting

gh = a—>B = (Tlx € A)B,
provided B does not depend on x. We next consider the Tl-rules in
the interpretation of proposltlons as sets. If, in the first rule,
T1-formation, we think of B(x) as a proposition instead of a set,

then, after the definition

(Vx € BB(x) = (Tx € DB,

1

it becomes the rule

VY -formation

(x € 4)

A set B(x) prop.

(Y x € A)B(x) prop.

which says that universal quantification forms propositions. A set
merely says that the domain over which the universal quantifier ranges
is a setvand this is why we do not change it into A prop. Note that
the rule bf V -formation is just an instance of [l-formation. We

similarly have

V -introduction

(x € 4)

B(x) true

(Vx e A)B(x) true

whi i
ch is obtained from the rule of IM-introducti
the proof b(x). Namely, o

for some a,

" Y suppressing
o e write in general A true instead of a e A
n s thought of as a-
Proposition and w
about what its proof (construction) is oo e
More generally,

W
€ can suppress proofs as follows. Suppose that

a(x,,... A( ‘
1 ,xn) e A(x1,...,xm) (x1 € A

xm+1 € Am

10 eer X € A (x X
i (XqremesX )
1o, )

ey X € An(xi,...,xm))

- namely, Suppose that A

up to
— o1 UpP A and A depend only on x

i .
we are merely 1nterested in the truth of A( " o
x

m

inessentlal to Hl'ite expllcib symbols for the elem ts o A
1? “m’
en
| - f 19 ®=ey

A(x es ey X ) true X, € A .o X € A (x ceeyX

1°? “m (1 ’ ’ m m 17 ym 1)
A (x yeee X ) tlue, ceey A (x geoe03X ) true).
m+1 1 m n 1 m )

Similarly, we write

A( ,...x) rop. X eA-A (=3
X \
1 "*m P ( 1 1 ceey X A(x

1!"'lx
Am+1(x1,...,xm) true,

_ w100
o 55 An(x1,...,xm) true)

’ ( 9oy 1 1 1?
1 ) i € A cee
that is A(x X is a proposition provided x ’

55 An(¥1""'xm)

(1 .. 1 171
mEA X,y .'x ) X
X and A ( x)



are all true, as an abbreviation of

e, X_ € A (x_.,...,X _1),
A(x1,...,xm) prop. (x1 € A1, v Xp o' X1 i

€ A (X, yeee,rX ).
x e'A:|H-‘I(x1v---rxm)’ weaty Xy n( 1 "m

m+1
le of [l-elimination,
V -rules, from the ru
Turning back to the .
we have in particular
VY -elimination

a €A (Vx € A)B(x) true

B(a) true

i i Y x € A)B(x)
Restoring proofs, we see that, if ¢ is a proof of ( .

then A c,a is a roof of B(a); so a pX'OOf of Vx € A)B(x) 1is
p( 3y ) P ( )y (
o
h ich tak an arbitr 1 pro f of B(a),
a method wh es r trary element of A nto a

h the nive al
in a, reement wit h 1nbu1t10nlstlc 1htel'pl etation of the u vers
g

quantifier.

If we now define
AoB = a—-8 = B* = (ITx € A)B,

- the rules
B does not depend on x, we obtain from the [l-rules
where o

for 1mplicatlon. From the rule of [[-tox“‘abioll, assumillg B does not

depend on x, we obtain

> -formation

(A true)
A prop. B prop.
A D B prop.

. which comes from the rule of I1-

which is a generalization of the usual rule of forming A o B, since

we may also use the assumption A true to prove B.prop. This general-
ization is perhaps more evident in the Kolmogorov interpretation,
where we might be in the position to judge B to be a problem only un-

der the assumption that the problem A can be solved, which is clearly

sufficient for the.ﬁroblem A > B, that is, the problem of solving B

provided that A can be solved, ‘to make sense. The inference rules for

2 are:
D=-introduction

(A true)

B true

A O B true

introduction by suppressing proofs,

and
S-elimination

A > B true A true

B true

which is obtained from the rule of TT-elimination by the same process.
Example (the combinator I). Assume A set and x e A. Then,
[M-introduction, we obtain Ax)x e A—> 4,

osition A, A > A true.

by

and therefore, for any prop-
This expresses the fact that a proof of A > A
is the method: take the same proof (construction).

combinator I putting I = (Ax)x.
set of the form A — A

We can define the
Note that the same I belongs to any

, Since we do not have different variables for
different types.



Example (the combinator K). Assume A set, B(x) set (x € A) and
let x € A, y € B(x). Then, by-)‘-abstraction on y, we obtain
(Ay)x € B(x) - A, and, by )\ -abstraction on x,
Ax)QAy)x € (ITx € A)(B(x) —> A). We can define the combinator K
putting K = (Ox)(Ay)x. If we think of A and B as propositions, where
B does not depend on x, K appears as a proof of A D (B > A); so
A > (B> A) is true. K expresses the me?hod: given any ?roof x of A,
take the function from B to A which is cohstantly x for any proof y 4
of B. '

Example (the combinator S). Assume A set, B(x) set (x € A),
C(x,y) set (x € A, y €B(x)) and let x € A, f € (I1x € A)B(x) and
g € (IMx € a)(ITy € B(x))C(x,y). Then Ap(f,x) € B(x).and
Ap(g,x)’e (IMMy e B(x))C(x,y) by [l-elimination. So, again by

[l-elimination,
Ap(Ap(g,x),Ap(f,x)) € C(x,Ap(f,x)).
Now, by A-abstraction on x, we obtain
Ax)Ap(Ap(g,x),Ap(£,x)) € (TIx € A)C(x,Ap(f,x)),
and, by A-abstraction on f,

(Af) (Ax)Ap(Ap(g,x) ,Ap(f,x))
e(Tr € (Ix € 8)B(x))(Ix ea)c(x,Ap(f,x)).

Since the set to the right does not depend on g, abstracting on g, we

obtain

&) AL) ) Ap(Ap(g,x) ,Ap(£,x)) € (Tx e &) (ITy € BaDEix )
— (TIre(Mx € a)B(x))(MNx € A)C(x,Ap(f,x)).

We may now put -
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N

s = (Ag)af)(}\x)npmp(g.x).Ap(r,x))

which is the usual combinator S, denoted by ‘Agfx.gx(fx) in combina-
tory logic. In this way,

nator S. Now think of C(x

have proved

we have assigned a type (set) to the combi-

,¥) as a proposiﬁional function. Then we

(Vx ea)(Vy e B(x))C(x,y)
S>(Vr e (Tx e A)B(x))(Yx e A)C(x,Ap(f,x)) true

’

. Which is traditionally written

(Vx € 8)(Vy e B(x))c(x,y) o (Vre [T B_x)(Vx € A)C(x,f(x)).
xeA

If.we_assume that C(x,y) does not depend on y, then
(My € B(x))C(x,y) = B(x) —=C(x) and therefore

S e (INx € 4)(B(x) —C(x)) = ((TIx € A)B(x) — ([Ix e A)C(x));
So, if we think of B(x) and C(x) as propositions, we have

(Vx e a)(B(x) 2C(x)) > ((Vx € A)B(x) > (Vx e A)C(x)) true.

Now assume that B(x) does not depend on x and that C(x,y) does not
depend on x and- y. Then we obtain

S e (A*(B*C))—’((A*B)—’(A“—C)),
that is, in the logical interpretation,v
(A=(B>0)> ((A>8) > (A>C)) true.

This is just the second axiom of the Hilbert style propositional cal-

culus. In this last ~ase, the proof above, when written in treeform,



becomes:

(x € h) (f € A—B) (x € A) (g e A—=(B—C))

Ap(f,x) € B Ap(g,x) € B —~C
’

Ap(Ap(g,x),Ap(f,x)) €C

(Ax)Ap(Ap(g,x) ,Ap(£,X)) € A —=>C

- — (A= C)
(A£) O\x)Ap(Ap(g,x) ,Ap(f,x)) € (A —>B) — (

. - — — A—B) — (A - C))
(Ag) VE) OAx) Ap (Ap(g,x) ,Ap(£,x)) € (A — (B —~C)) — ((

Disjoint union of a family of sets

The vsecond group of rules is about the disjoint union of a
family of sets.

L -formation

(x € 4)

A set B(x) set

(Zx € A)B(x) set

A more traditional notation for (Zx € A)B(x) would be 2B
(@] Bx or U Bx).
x€A xeA

prescribing how its canonical elements are formed. This we do with
the rule:

xeA

We now explain what set (x e A)B(x) is by

2 -introduction

ae€An - b € B(a)

(a,b) € (Lx € 4)B(x)

We ‘can now Jjustify the equality rule associated with ¥ -forma-
tion: ‘

(x € A)

A=C B(x) = D(x)

(Zx € A)B(x) = (°x € C)ﬁ(x)

In fact, any canonical element of (Ix e A)B(x) is of the form (a,b)

with a € A and b e B(a) By Z -introduction. But then we also have
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a € C and b € D(a) by equality of sets and substitution. Hence
(a,b) € (£ x € C)D(x) by ¥.-introduction. The other direction is

similar.
L -elimination

(x € A, y € B(x))

c € (Zx € A)B(x) d(x,y) € C((x,y))

E(e,(x,y)d(x,y)) € C(ec)

where we presuppose the premiss C(z) set (z € (Lx € A)B(x)), although
it is not written out explicitly._(fo be precise, we should also

write out the premisses A set and B(x) set (x € A).) We explain the
rule of X -elimination by showing how the new constant E operates

on its arguments. So. assume we know the premisses. Then we execute
E(c,(x,y)d(x,y)) as follows. First execute c, which yields a canonical
element of the form (é,b) with a € A and b € B(a). Now substitute a
and b for x and y, respectively, in the right premiss, obtaining
*d(a,b) € c((a,b)). Executing d(a,b) we obtain a canonical element e of
C((a,b)). We now want to show that e is also a canonical element of
C(e). It is a general fact tﬁat, if a € A and a has value b, then

a = be A (note, ﬁowever, that this does not mean that a = b € A is
necessarily formally derivable by some particular sef of formal rules).
In our case, ¢ = (a,b) € (Tx € 4)B(x) and hence, by substitution, '
C(c) = C((a,b)). Remembering what it means for two sets to be equal,
we conclude from the fact that e is a canonical element of C((a,b))
that e is also a canonical element of C(ec).

Another notation for E(c,(x,y)d(x,y)) could be (Ex,y)(c,d(x,y)),

but we prefer the first since it shows more clearly thét x and y be-

come bound only in d(x,y).

~Same canonical element is produced by d(a,b),

o B

T -equality

(x € A, y € B(x))

acA b € B(a) d(x,y) e C((x,y))

E((a,),(x,y)d(x,y)) = d(a,b) € C((a,b))

(Here, as in ¥ -elimination, C(z) set (z € (Lx e A)B(x)) is an im-

pl;cit premiss.) Asspming that we know the premisses, the conclusion

is -justified by imagining E((a,b),(x,y)d(x,y)) to be executed. In fact,

we first execute (a,b), which yields (a,b) itself as' result; then we
€ C((a,b)), and
€ C((a,b)). The

and thus the conclusion

substitute a, b for x, y in d(x,y),'obtaining d(a,b)

execute d(a,b) until we obtain a canoniecal element e

is-correct.

A second rule of X -equality, analogous to.the second rule of

ﬂ-equality, ;s now derivable, as we shall see later.



Applications of the disjoint union

As we have already done with the cartesian product, we shall

now see what are the logical interpretations of the disjoint uniogi

If we put
(3x e A)B(x) = (Dx e MB(x),

then, from the Z -rules, interpreting B(x) as' a propositional’ func-

tion over A, we obtain as p;rticular cases:

A -formation

(x € .A)

A set B(x) prop.

(3x € A)B(x) prop.

J-introduction

a el B(a) true

(3x e A)B(x) true

In accordance with the intuitionistie interpretation‘of the existen-
tial quantifier, the rule of Y -introduction may be interpreted as
saying that a (canonical) proof of (3Ix e A)B(x) is a pair (a,b),
where b is a proof of the fact that a satisfiés B. Supprgssihg
proofs, we obtain the rule of I -introduction, in which, however,

the first premiss a € A is usually not made explicit.'

J-elimination

(x € A, B(x) true)

(dx € A)B(x) true C true

C true

Here, as usual, no assumptions, except those explicitly written out,
may depend on the variable x. The rule of 2.-elimination is stronger
than the J-elimination rule, which is obtained from it by suppressing
proofs, since we take into consideration also proofs- (constructions),

which is not possible within the language of first order predicate

. logic. This additional strength will ‘be visible when treating the left

and right projections below.
The rules of disjoint union deliver also the usual rules of con-

junction and the usual properties of the cartesian product of two

* sets if we define

A&B = AXB = (Ix € A)B,

where B does not depend on x. We derive here only the rules of, con-

junction.

&-formation

(A true)A
A prop. B prop.
A &.B prop.

This rule is an instance of'Z:-formation and a generalization of the
usual rule of forming propositions of the form A & B, since we may

know that B is a proposition only under ihe assumption that A is true.



&-introduction

A true v B true

A & B true

Restoring proofs, we see that a (canonical) proof of A & B is pair

(a,b), where a and b a}e given proofs of A and B respectively.

&-elimination

(A true, B true)

‘A & B true - C true

C true

From this rule of &-elimination, we obtain the standard &-elimination

rules by choosing C to be A énd‘B thepselves:

A & B true . (A true) . A&B true (B true)

A true ' B true

Example (left projection). We define
p(e) = E(e,(x,y)x)

and call it the left projection of ¢ since it is a method of obtain-
ing the value of the first (left) coordinate of the pair produced by
an arbitrary element c of (x € A)B(x). In fact, if we take the term
d(x,y) in the explanation of T -elimination to be x, then we see that
to execute p(c) we first obtain the pair (a,b) with a € A and b € B(a)
which is the value of ¢, and then substitute a, b for x,.y in x, ob-

taining a, which is executeﬂ to yield a canonical element of A. There-

fore, taking C(z) to be A and d(x,y) to be x in the rules of ¥, -elim-

ination and XY -equality, we obtain as derived rules:

Left projection

c € (Lx e A)B(x) ‘a €A b. € B(a)

p(ec) € A . p((a,b)) = a € A
If we now turn to the logical interpretation, we see that

c € (3x €A)B(x)

p(c) € A

holds, which means that from a proof of (dx € A)B(x) we can obtain an
elehent of A for which the property B holds. So we have no need of the
description operator (1x)B(x) (the x such that B(x) holds) or the
choice operator (€x)B(x) (an x such that B(x) holds), since, from the
intuitionistic ‘point of view, (3 x € A)B(x) is true when we have a
proof of it. The difficulty with an epsilon term (€x)B(x) is that it
is construed as a function of the property B(x) itself and not of the
proof of (3 x)B(x). This is why H;lbert had to postulate both a rule
of the form

(3 x)B(x) true

(ex)B(x) individual
a counterpart of which we have just proved, and a rule of the form

(3 x)B(x) true

B((ex)B(x)) true



which has a counterpért in the first of the rules of right projection
that we shall see in the next example.

Example (right projection). We define
q(e) = E(e,(x,¥)¥)-

Take d(x,y) to be'y in-the rule of ¥ -elimination. From x € A,

y € B(x) we obtain p((x,y)) = x € A by left projection, and there-
fore B(x) = B(p((x,y))). So, by the rule of equality of sets,

y € B(p((x,y))). Now choose C(z) set (z € (Lx € A)B(x)) to be the
family B(p(z)) set (z € (Lx € A)B(x)). Then the rule of L -elimin-
ation gives q(e) € B(p(e)). More formally:

(x € A) (y € B(x))

p((x,y)) = x €A

- x = pl(x,y)) € A

(y e B(x)) B(x) = B(p((x,y)))

c e (IZx € A)B(x) y G_B(p((x,Y)))

qle) = E(e,(x,y)y) € B(p(e))
So we have:
Right projection

c e (Zx € A)B(x) ~a €A b € B(a)

q(e) € B(p(e)) q((a,b)) = b € B(a)

The second of these rules is derived by % -equality in much the same
way as the first was derived by Z -elimination.
When B(x) is thought of as a propositional function, the first

rule of right projection says that, if ¢ is a construction of

(3x € A)B(x), then q(ec) is a construction of B(p(c)), where, by left
projection, p(ec) € A. Thus, suppressing the construction in the con-
clusion, B(p(e)) is true. Note, however, that, in case B(x) depends
on x, it is impossible to suppress the construction in the premiss,
since the conclusion depends on it.

Finally, when B(x) does not depend on x, so that we may write
it simply as B, and both A and B are thought of as propositions, the

first rule of right projection reduces to
&-elimination

A & B true

B true

by suppressing the constructions in both the premiss and the conclu-
sion.

Example (axioms of conjunction). We first derive
A > (B> (A & B)) true, which is the axiom corresponding to the rule
of &-introduction. Assume A set, B(x) set (x € A) and let x € A,
y € B(x). Then (x,y) € (Zx € A)B(x) by L -introduction, and, by
IT-introduction, (Ay)(x,y) € B(x) — (Z x € A)B(x) (note that
(£ x € A)B(x) does not depend on y) and (Ax)Qy)(x,y)e
(IMx € A)(B(x)—> (Lx € A)B(x)). The logical reading is then

(Vx € 8)(B(x) © (Ix € A)B(x)) true,
from which, in particular, when B does not depend on Xy
A D(BD(A & B)) true.

We now use the left and -right projections to derive A & B D A true

and A & B D B true. To.obtain the first, assume z € (Lx € A)B(x).



Then p(z) € A by left projection, and, by A-abstraction on z,
\z)p(z) € (Lx € A)B(x)—>A.
In particular, when B(x) does not depend on x, we obtain
A& B DA true.
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To obtain the second, from z € (Zx € A)B(x), we have q(z) € B(p(z))
by right projection, and hence, by A-abstraction,

(\z)a(z) € (Tlz € (Zx € A)B(x))B(p(2)) =

(note that B(p(z)) depends on z). In particular, when B(x) does not

depend on x, we obtain
A & B DB true.

Example (another application of the disjoint union). The rule of
Y -elimination says that any function d(x,y) with arguments in A and
B(x) gives also a function (with the same values, by X -equality) with
a pair in (Z x € A)B(x) as single argument. What we now prove is an

axiom corresponding to this rule. So, assume A set, B(x) set (x € A),

C(z) set (z € (Lx € A)B(x)) and let f € (TTx € a)(TTy € B(x))C((x,y)).

We want to find an element of
(Tlx € &) (Ty e B(x))cl(x,y)) = ([lz € (Zx € M)B(x))C(z).

We define Ap(f,x,y) = Ap(Ap(f,x),y) for convenience. Then Ap(f,x,y)
is a ternary function, and Ap(f,x,y) € C((x,y)) (x € A, y € B(K)).-So
assuming z € (Zx € A)B(x), by Y -elimination, we obtain
E(z,(x,y)Ap(f,x,y)) € C(z) (discharging x € A and y € B(x)), and, by

A-abstraction on z, we obtain the function

O2)E(z, (x,¥)Ap(£,%,¥)) € (ITz € (Dx € A)B(x))c(z)

with argument f. So we still have the assumption

£ e (IMx e &)(Ty € B(x))c(x,y),
which we discharge by A-abstraction, obtaining

(Af) \z)E(z,(x,y)Ap(f,x,y)) €
(Mx e ) (My e B(x))c((x,y)) - (TTz € (Lx € 4)B(x))C(z).

In the logical reading, we have
(Vx e 1)(Vy e B(x))C((x,y)) D (Vz € (LZx €A)B(x))C(z) true,
which reduces to the common
(Yx € A)(B(x) D C) © ((Ix €A)B(x) D C) true
when C does not depend on z, and to

(AA>(BDC)) > ((A & B)DC) true

when, in addition, B is independent of x.



The axiom of choice

We now show that, with the rules introduced so far, we can give

a proof of the axiom of choice, which in our symbolism reads:

(Vx € )(3y e B(x))C(x,y)
>(3fr e (Mx € A)B(x))(Vx € A)C(x,Ap(f,x)) true.

The usual argument in intuitionistic mathematics, based on the in-
tuitionistic interpretation of the logical constants, is roughly as
follows: to prove (Y x) (3 y)C(x,y) @ (3 £)(V x)C(x,f(x)), assume that
we have a .proof of the antecedent. This means that we have a method
which, applied to an arbitrary x, yields a proof of (3 y)c(x,y), that
is, a pair consisting of an element y and a proof of C(x,y). Let f

be the method which, to an arbitrarily given x, assigns the first
component of this pair. Then C(x,f(x)) holds for an arbitrary x, and
hence so does the consequent. The same idea can be put into symbols,
getting a formal proof in intuitionistic type theory. Let A set,

B(x) set (x € A), C(x;y) set (x € A, y € B(x)), and assume

z € (Ilx € A)(Ly € B(x))C(x,y). If x is an arbitrary element of

A, i.e. x € A, then, by J[-elimination, we obtain
Ap(z,x) € (Ly e B(x))C(x,y).
We now apply left projection fo obtain
p(Ap(z,x)) € B(x)
and right projection to obtain
q(Ap(z,x)) € C(x,p(Ap(z,x))).

By A-abstraction on x (or Tl-introduction), discharging x € A, we

have
x)p(ap(z,x)) € (Ix € HB(x),
and, by ﬂ-equali#y,
Ap(Q\x)p(Ap(z,x)),x) = p(Ap(z,x)) € B(x). .

By substitution, we get

C(x,ap(x)p(Ap(z,x)),x)) = C(x,p(Ap(z,x)))
and hence, by equality of sets,

q(Ap(z,x)) € C(x,Ap((Xx)p(Ap(z,x)),x))
whére (Ax)b(Ap(z,x)) is independent of x. By abstraction on x,
Mx)a(Ap(z,x)) € (Tlx e A)Clx,Ap(x)p(Ap(z,x)),x)).

We now use the rule'of pairing (that is, X -introduction) to get

((Xx)p(Ap(z,x)),(Xx)q(Ap(z,x)))e
(Zf e (Ix € A)B(x))(Tx e a)c(x,Ap(f,x))

(note that, in the last step, the new variable f is introduced and
substituted for (Xx)p(Ap(z,x)) in the right member). Finally, by

abstraction on z, we -obtain

Az) (Ax)p(Ap(z,x)),Ax)a(ap(z,x))e (TIx € A)(Zy € B(x))C(x,y)
S (Lf € ([Tx € 1)B(x))(MMx € a)C(x,Ap(F,x)).

In Zermelo-Fraenkel set theory, there is no proof of the axiom
of choice, so it must be taken as an axiom, for which, 5owever, it

seems to be difficult to claim self-evidence. Here a detailed



. : of the axiom of choice has been provided in the form 5 : , The notion of .such that
justification oof. In many sorted languages, the axiom of choice is
o KirERes Pz there is no mechanism to prove it. For 1nsténce, in . . In addltion to d13301nt union, ex1stentia1 quantification,
expreSSiblzt::etic of finite type, it must be taken as an axiom. The t ‘_'carteslan product A X B and conjunction A & B, the operation £ has
Heyting ar ;

need for th

mathematics 2

e axiom of choice is clear when developing intuitionistic ; " a fifth interpretatiqn: the set of all a € A such that B(g) holds.
¢ depth, for instance, in finding the limit of a sequence | Let Abea get and ?(x) a proposition for x € A. We want to define

% rtial inverse of a surjective function. . ,; . the set of all a€ A éuch that B(a) holds_(which is usually written
of reals or & P {x € A: B(x)})..Tb_haGQ an element a € A such that B(a) holds means
3 to have an elemén£ a € A together with a proof of B(é), namely an
element b € B(a). So the elements of the set of all elements of A
satisfying B(x) are pairs (a,b) with b € B(a), i.e. elements of
"(Zx € A)B(x). Then the L-rules play the role of the comprehension
‘axiom (6r the éeparation principle in ZF). The information given by
b & B(a) is called the witnessing information by Feferman11. A typi-
cal application is the following.

-Example (the reals as Cauchy sequences).

R

I

(Zx € N—Q)Cauchy(x)

is the definition of the reals as the setiof sequences of rational

numbers satisfyiné the Cauchy condition,

Cw&ﬂa)i(VeeQHe>OD(HmeNHVneNHhmm4J$ e),

where a is the sequence ao, a1, ... In this way, a real number is a
sequence of rational numbers toghether with a prodf that it satisfies

the Cauchy condition. So, assuming'é,e R, e € Q and d € (e > 0) (in

11 S. Feferman, Constructive theories of functions and classes,

Logic Colloquium 78, Edited by M. Boffa, D. van Dalen and K. McAloon,
- North-Holland, Amsterdam, 1979, .pp. 159-224.
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other words, d is a proof of the proposition e > 0), then, by means
of the projections, we obtain p(e) € N—>Q and q(c) = Cauchy(p(e)).
Then

Ap(a(e),e) € (e >0 > (Ime N)(Vn e N)(lram+n-am| < e)
and
ap(Ap(a(e),e),d) € (Im e M(Ynemla  -al <e).
Kpplying left projection, we obtain the m we need, i.e.
p(Ap(Ap(q(c),e),d)) € N,
and we now obtain a. by applying p(e) to it,
Ap(p(e),p(Ap(Ap(q(e),e),d))) € Q.

Only by means of the proof q(c) do we know how far to go for the

approximation desired.

Disjoint union of two sets

We now give the rules for the sum (disjoint union or coproduct)
of two sets.

+-formation

A set B set

A + B set
The canonical elements of A + B are formed using:
. +=introduction

acA b €B

i(a) € A + B j(b) e A + B

where i and j are two new primitive constants; their use is to give
the information that an element of A + B comes from A or.-B, and which

of the two is the case. It goes without saying that we also have the

rules of +-introduction for equal elements:

a=c¢c €A b=deB

i(a) = i(e) € A + B ~ J(b) = j(d)e A + B

Since an arbitrary element ¢ of A + B yields a canonical element of
the form i(a) or j(b), knowing ¢ € A + B means that we also can de-

termine from which of the two sets A and B the element ¢ comes.



+-elimination

(x €en) (y € B)

ceh +B d(x) € c(i(x)) e(y) € Cc(iy))

D(c,(x)d(x),(y)e(y)) € C(e)

where the premisses A'set; B set and C(z) set (z € A + B) are pre-
supposed, although not explicitly written out. We must now explain
how to execute a program of the new form D(c,(x)d(x),(y)e(y)). As-

sume we know ¢ € A + B. Then c will yield a canonical element i(a)

with a € A or j(b) with b € B. In the first case, substitute a for x

in d(x),.obtaining d(a), and execute it. By the second premiss,

d(a) € Cc(i(a)), so d(é) yields a canonical element of C(i(a)). Simi-
larly, in the second case, e(y) instead of d(x) must be used to ob-
tain e(b), which produces a canonical element of C(j(b)). In either
case, we obtain avcanonical element of C(c), since, if c¢ has value
i(a), then ¢ = i(a) € A + B and hence C(ec) = C(i(a)), and, if ¢ has
value j(b), then ¢ = j(b) € A + B and hence C(c) = C(j(b)). From

this explanation of the méaning of D, the equality rules:
+-equality

(x € 4) (y € B)

aeA d(x) € Cc(i(x)) e(y) € C(j(y))

D(i(a),(x)d(x),(y)e(y)) d(a) € c(i(a))

(x €4) (y € B)

b € B d(x) € Cc(i(x)) e(y) € c(j(y))

D(j(b),(x)d(x),(y)e(y)) = e(b) € C(j(b))

_b'{-

" become-evident.

The dlsJunction of two propositions is now interpreted as the

. sum of two sets. We therefore put:

AVB = A+B.

From the formation and introduction rules for +, we then obtain the

corresponding rules ' for V :

V -formation

A prop. B prop.

A v B prop.

V -introduction

A true B true

A Vv B true AV B true

Note that, if a is a proof of A, then i(a) is a (canonical) proof of
A v B, and similarly for B.

V=-elimination

(A true) (B true)

- A v B true C true C true

C true

follows from the rule of +-elimination by choosing a family
C = C(z) (z € A + B) which does not depend on z and suppressing
proofs (constructions) both in the premisses, including the assump-

tions, and the conclusion.



Example (introductory axioms. of disjunction). Assume A set,

B set and let x € A. Then i(x) € A + B by +-introduction, and hence
(Ax)i(x) € A = A + B by A-abstraction on x. If A and B are proposi-
tions, we have A © AV B true. In the same way, (Ay)j(y) € B—>A + B,
and hence B> A V B true.

.Examgle (eliminatory axiom of disjunction). Assume' A set, B set,
C(z) set (z € A + B) and let £ & (Mx € A)C(i(x)), g & (Tly € B)C(3(¥y))
and z € A + B. Then, by [l-elimination, from x € A, we have
Ap(f,x) € C(i(x)), and,vfrém y € B, we have Ap(g,y) € C(j(y)). So,
Qsing z € A + B, we can apply +-elimination to obtain
D(z,(x)Ap(f,x),(y)Ap(g,y)) € C(z), thereby discharging x € A and
y € B. By A-abstraction on z, g, f in that order, we get

A £) \g) Az)D(z, (x)Ap(f,x),(¥)Ap(g,¥))
e(ﬂx e A)C(i(x)) —-»((ny EB)C(J(}’))'—’(HZ € A + B)C(Z)).

This, when C(z) is thought of as a préposition, gives
(Vx € A)C(i(x)) D ((Yy e BIC(§(y)) D (¥z € A + B)C(z)) true.

If, moreover, C(z) does not depend on z and A, B are propositions as

well, we have

(A>C)> ((BDC)D (AY B>C)) true.

Propositional equality

We now turn to the axioms for equality. It is a tradition
(defiving its origin from Principia Mathematica) to call equality
in predicate logic identity. However, the word identity is more

properly used for definitionai equality, = or discussed

= ,
above. In fact, an equality statement, for instagzz: 27 = 2+2 in
arithmetic, does ﬁot mean that the two members are the same, but
merely that they have the same value. Equality in predicate logic,
however, is also different frqm our equality a = b é A, because the
former is a proposition, while the latter is a judgement. A form of
propositional equality is nevertheless indispensable: we want an
equality I(A,a,b), which asserts that a and b are equal elements of
the set A, but on which we can operate with the logical operations
(recall that e.g. the negation or quantification of a judgement does
not make sense). In a certain sense, I(A,a,bf.is an internal form

of =. We then have four kinds of equality:

(1) = or 2 def.
(2) A = B,
(3) a=beA,

(4) I(A,a,b).

Equality between objects is expressed in a judgement and must be de-
fined separately for each category, like the category sets, as in (2),
or the category of elements of a set, as in (3); (4) is a proposition,
whereas (1) is a mere stipulation, a relation between linguistic

expressions. Note however that I(A,a,b) true is a judgement, which

will turn out to be equivalent to a = b € A (which is not to say



that it has the same sense). (1) is intensional (sameness of mean-
ing), while (2), (3) and (4) are extensional (equality between ob-
jects). As for Frege, elements a, b may have different meanings, or
be different methods, but have the same value. For instance, we

certainly have 22 = 242 € N, but not 22 = 2+2.
I-formation

A set a €A beA

I(A,a,b) set

We now have to explain how to form canonical elements of I(A,a,b).

The standard way to know that I(A,a,b) is true is to have a = b € A.
Thus the introduction rule is simply: if a = b € A, then thére is a
canonical proof r of I(A,a,b). ﬁere r does not depend on a, b or Aj;

it does not matter what canonical eleﬁent I(A,a,b) has when a = b € A,

as long as it has one.
I-introduction

a=beA

r € I(A,a,b)

Also, note that the rule for introducing equal elements of I(A;a,b)

is the trivial one:

a=beA

r =r € I(A,a,b)

We could nowvadopt elimination and equality rules for I in the same

style as for T1, &, +, namely introducing a new eliminatory operator.
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as primitive: » Which we here take insteaq
I-elimination
c € I(A,a,b)
—_——
a=bey

I-equality

c e I(A,a,b)

¢ = p GI(A,a,b)

-formation is ¢
he on1
mits the forma Y rule up to now
+, N tlon of families of sets. If only ¢ Wh%Ch P
* "nr Ny Wowere alioweq Y the operations n,x,

- Assume 3 set
and let
introduction, r € I(Ax,x). By

x)r € (Vx
€ A)I(A,x :
ca ) xX). T
noniecal Proof of the law of identity’ , A nerefore (AX)P "
on A,

X €
A. Then x - X € A, and, by I-

abstraction op x
. ’

(x € g)
\
X = x€ A
—_—
re I(A,x,x)

Qx)r e (Vx ¢ A)I(A,x,x)

Examgle (eliminatory axio

m of
Property B(x) prop. identity),

(x € 4) ove
rA,w .
corresponding to Leibnigz:® * ¥8 aladw %

Given a get A and a

hat the 1ay of €quality

» hamely
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(Vx € A)(Vy € A)(I(A,x,y) D (B(x) D B(y))) true.

To prove it, assume x € A, y € A and 2z €. I(A,x,y). Then x = y € A and
hence B(x) = B(y) by substitution. So, assuming w € B(x), by equality
of sets, we obtain w € B(y). Now, by abstraction on w, z, y, x in that

order, we obtain a proof of the claim:

(z € I(A,x,y))  (x eh)
x =y €A B(x) set
" (w e B(x)) B(x) = B(y)
w € B(y)

. (Aw)w € B(x) > B(y)

Az)QAw)w € I(A,x,y) D (B(x) D B(y))

) Ay) Az) Aw)w € (Vx € A)(Vy € A)(I(A,x,y) D (B(x) 2 B(y)))

The same problem (of justifying Leibniz's principle) was. solved
in Principia by the use of impredicative second order quantification.

There one defines
(a = b) = (VX)(X(a) D X(b))

from which Leibniz's principle is ﬁbvious, since it is taken to define
the meaning of identity. In the present 1angua§e, quantificétién.dver
properties is not possible, and hencé the meaning of identity.has £6
be defined in another way, without invalidating Leibniz's p}inciple,-
Example (proof of the converse of the projection'laws). We can

now prove that the inference rule

c e (Lx e A)B(x)

“e = (p(e),q(e)) € (Zx € A)B(x)

e el T

is derivable. It is an analogue of ‘the second Tl-equality rule, which
could also be derived, provided the Tl-rules were formulated following
the same pattern as the other rules. Assume x € A, y € B(x). By the
projection laws, p((x,y)) = x € A and q((x,y)) = y € B(x). Then, by

¥ -introduction (equal elements form equal pairs),

(p((x,¥)),a((x,¥))) = (x,y) € (Cx € A)B(x).

By I-introduction,
r € I((Lx € A)B(x),(p((x,y)),q((x,y))),(x,y)).

Now take the family C(g) in the rule of Y. -elimination to be
I((Z x € A)B(x),(p(z),q(z)),z). Then we obtain

E(e,(x,y)r) € I((Lx € A)B(x),(p(e),q(ec)),e)

and hence, by I-elimination, (p(e),q(e)) = ¢ € (Ix e A)B(x).
N )

(x € A) (y € B(x)) (x € A) (y € B(x))

p((x,y)) = xe A q((x,y)) = y € B(x)

(p((x,y)),g((x,y))) = (x,y) € (Ex € A)B(x)

¢ € (Lx-€ A)B(x) r € I((Zx e A)B(x),(p((x,y)),q((x,y))),(x,y))

E(e,(x,y)r) € I((Z x € A)B(x),(p(ec),q(c)),c)

(p(e),q(e)) = ¢ € (Zx € A)B(x)

This example is typical. The I-rules are used systematically to show
the uniqueness of a function, whose existence is given by an elimin-
ation rule, and whose properties are expressed by the associated

equality rules.
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and ‘indexed families of elements). There

Example (properties

i t B:
are two ways of looking at subsets of a se

(1) a subset of B is a propositional function (property)

c(y) (y € B);

(2) a subset of B.is an indexed family of_elements

b(x) € B (x € A).

’

we can prove the equivalence of these two

Using the jdentity rules,

. op-
Given an indexed family as in (2), the corresponding prop

concepts.

erty is
(3x e MI(B,b(x),y) (¥ € B),

ver v y i ondin
and conve sely, gi en a propert as 1n (1), the corresp g
’

indexed family is

p(x) € B (x € (Ty e B)C(¥))-

- 0O -

Finite sets

Note that, up‘to now, we have no operations to build up sets
) from nothing,vbut only oﬁerations to obtain new sets from given ones

i " . (and from families of sets). We now introduce finite sets, which are

" given outright; hence their set formation rules will have no §remisses.
Actually, we have infinitely many rules, one group of rules for each

n=20,1, ..
Nn-formation
N seﬁ
ANn—in;foduction
m € N (m =0, 1, ..., n=1)

So we ‘have .the sets'No 1

10 N2 with canonical elements 02, 12, ete.

with no elements, N, with the single canonical

element 0

Nn-elimination

c €N

n en (= C(mn). (m =0, 1, ..., n=1)

_Bn(c,co. s 5 ,cn_1) € C(c)

Here, as usual, the family of sets C(z) set (z é Nn) may be interpreted
as a property ovgr Nﬁ' Assgming we know the premisses, Rn is explained
as follows: first execute c, whoge_resul; is mn for some m between 0
and n-1. Select the corresbondihg element cm of C(mn) and continue by
executing it. The result is a cagbnical element d € C(c), since c has
been seen to ﬁe equal to m and.cﬁ é C(mnf'is a premiss.,Rn is recur-

sion over the finite set Nn; it is a kind of definition by cases.
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we have the
i the above explanation,
From the meaning of Rn, given by

-introduction):
n rules (note that o € Nn by Nn

-equality
Nn eq

"
o

c ec(m) (m 1, «.., n=1)
m n

= € C(m)
Rn(mn’co""'cn-1) = Cp n

n-1 in the conclu-
‘choice of m = 0, Vi swmen
uch rule for each ¢
e, roach would be to postulate the rules for n
o and

sion). An alternativ . S e,
equal to O and 1 only, -define N2 = N1 + N, Ny = 1 >

then derive all other rules.

t N 5 N has no introduction rule apd hence no
Example (abou o) Yo

elements; it is thus natural to put

1l =08= N,

The elimination rule becomes simply:
No—elimination

c e No

I

Ro(c) e c(e)

Ihe‘ exp lanation of the ru le is that we under stand that we_ shal never
g H

c).
so that we shall never have to execute Ro( )

get an element ¢ € NO, o

: ram O
Thus the set of instructions for executing a prog

. g
Ro(c) is vacuous It is Slmila! to the pr Osxammi“ Stateme“t abor t

12
introduced by Dijkstra .

12 See note 2.

When C(z) does not depend on z, it is possible to suppress the
proof (construction) not only in the conclusion but also in the

pr?miss. We then arrive at the logical inference rule
1 -elimination
L trﬁe
C true

‘traditionally called ex falso quodlibet. This rule is often used in
ordinary mathematics, but in the form

(B true)

AV B true 1 true

A true

which is easily seen to be equivalent to the form above.
Example (about N1). We define

T= N1.
Then 01 is a (canonical) proof of T , since 01 € N1 by N1-introduc—

tion. So T 1is true. We now want to prove that 01 is in fact the only

. element of N1, that is, that the rule.

is derivable. In fact, from 01 € N1, we get 01 ] 01 < N1, and hence
r e I(N1,01,01). Now applY'Nl—elimination with I(N1,z,01) (z e N1)

for the family of sets C(z) (z € N1)._Using the assumption ¢ € N1,
we get Rl(c,r) € I(N1,c,01), and hence ¢ = O1 € N

1"
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g 1( ’ 0) 0o’
Y Y

N.-elimination’is derivable from the rule
1

le of N -equalll’.y tl‘lvlallzﬁs. Thus the opel'ablon R1 can
and the ru 1

be dispensed with.

the definition
Example (about Nz), We make

Boolean = N2.

3
Boolean is the bype used in Pr Ogr amming which COHSleS of the two

= = 1,.
So we could put true =;02 and false >

values true, false. ‘
o ; Rz(c,co,c1) because, if

Then we can define if ¢ then ¢ else ¢
c 1 (e,c.,c,) has the
is true, which means that ¢ yields 02, then R2 ¢,C5C4
s

same value as Cg,; otherw e ylelds 1 and R c,C c has the same
H h is c 2 2( 1€ 1)
0

value as c1.

As for N ov we can rove that any elemenb o N s €
1 ab e, P f 2 i ither

i in the propositional form
0, or 12, but obviously only in P

2

c € N2

) true
I(Nz,c,oz)‘v I(Nz,c,12) ru
Example (negation).llf we put

~A= TAE -A = A-*'NO

; ion.
we can easily derive all the usual rules of negati

Consistency

What can we say about the consistenéy of our system of rules?
We can understand consistency in two different ways: .

(1) Metamathematical consistency. Ihén, to prove mathematically
the consistency of a theory T, we consider another théory T', which
contains codes for propositions of the original theory T and a predi-
cate Der such that Der('A') expresses the fact that the proposition
A with code 'A' is derivable in T. Then we.define Cons =
—Der('L') = Der('L')> L and (try to) prove that Cons is true in
T'. This method is the only one applicable when, like Hilbert, we )
give up the ‘hope of a semantical justification of the axioms and rules
of inference; it could be followed, with success, also for intuition-
istic type theory, but, since we have been as meticulous about its
semantics as about its syntax, we have no need of it. Instead, we
convince ourselves directly of its consistency in the following simple
minded way.

(2) Simple minded consistency. This means simply that 1 cannot
be préved, or that we shall never have the right to judge L true
(which, unlike the proposition Cons above, is not a mathematical
proposition). To convince ourselves of this, we argue as follows: if
c e 1 would hold for some element (construction) ¢, then ¢ would
yipld a canonical element d € L ; but this is impossible since 1 nas
no canonical element by definiton (recall that we defined L = No).
Thus 1 true cannot be proved by means of a system of correct rules.
So, in case we hit upon a proof of 1 true, we would know that there
must be an error somewhere in the proof; and, if a formal proof of
1 true is found, then at least one of the formal rules used in it

is not correct. Reflecting on the meaning of each of the rules of



intuitionistic type theory, we eventually convince ourselviz :hat
they are correct; therefore we will never find a proof of rue
ing m. 4
uSIHgFEZZIly, note that, in any case, we must rely on the s%mple ,
minded consistency of at least the theory T' in which Co?s is prove
ih order to obtain the simple minded consistency (which 1s.the form
of consistency we really care about) from the metamathematical con-c
sistency of the original theory T. In fact, once ¢ € Con? fortso::
is proved, one must argue as follows:‘if T were not consisten ,din
would have a proof ;n T of L true, or a € NO for ?ome a. ?y'co -Lg,
this would give 'a''e Der(']l'); then we would obtain Ap(e,'a')e h,t
i.e. that L true is derivable in T'. At this point, to conclude.t a
L true is not provabié in T, we must be convinced that 1l true is

not provable in T'.
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Natural numbers
—=2"a’ numbers

So far, we have no means of constructin
now introduce the simplest one,
by the rules:

&€ an infinite set. We

namely the set of natural numbers,

N-formation

N set

N-introduetion

N aeN
0 e N

a'e N .
Note that, as is the case with any othep introduction rule,
is always canonical, whatever element a is.

a has value either 0 or a!

j» where 31 has value either 0 op aj, ete.,

a'e N

Thus a € N means that

until, eventually, we reach an element an which has value 0.

N-eliminafion

(x eN, y e C(x))

ceN d € C(0) e(x,y) C(x")

R(e,d, (x,y)e(x,y)) e C(e)

where C(z) set (z e N). R(e,d, (x,y)e(x

+¥)) is explained as follows:
first execute ¢, getting a canonical e

lement of N, which is either
0 or a' for some a € N. In the first case, continue by executing d

which yields a canonical element f e c(0);
this case,

’
but, since ¢ = 0 €N in
f is also a canonical element of C(e) = ¢(0). In the

second case,'Substitute a for x and R(a,d,(x.Y)e(x,y)) (namely, the



preceding value) for y in e(x,y) so as to get e(a,R(a,d,(x,y)e(x,y))).
Executing it, we get a canonical f which, by the right premiss, is in
C(a') (and hence in.C(c) since ¢ = a' € N) under the assumption
R(a,d,(x,y)e(x,y)) € C(a). If a has value 0, then R(a,d,(x,y)e(x,y))
is in C(a) by the first éase. Otherwise, continue as in the second
case, until we eventually reach the value 0. This explanation of the

elimination rule also makes the equality rules

N-equality
(x €A, y € C(x))
d €c(0) e(x,y) € C(x")
R(0,d,(x,y)e(x,y)) = d € C(0)
(x e N, y € C(x))
aeN d € c(0) e(x,y) € C(x")

R(a',d,(x,y)e(x,y)) = e(a,R(a,d,(x,y)e(x,y))) € C(a')

evident. Thinking of C(z) (z € N) as a propositiohal function (prop-
erty) and suppressing the proofs (constructions) in the second and

third premisses and in the conclusion of the rule of N-elimination,

Wwe arrive at
Mathematical induction

(x € N, C(x) true)

c €N C(0) true C(x"') true

C(e) true

If we explicitly write out the proof (construction) of C(ec), we see

that it is obtained by recursion. So recursion and induction turn

out to be the same’ coneept when propositions are interpreted as sets.

Example (the predecessor function). We put
pd(a) = R(a,0,(x,y)x).

This definition is justified by computing R(a,0,(x,y)x): if a yields
0, then pd(a) also yields 0, and, if a yields b', then pd(a) yields

the same value as R(b',0,(x,y)x), which, in turn, yields the same

‘value as b. So we have pd(0) = 0 and pd(a') = a, which is the usual

definition, but here these equalities are not definitional. More

precisely, we have

a €N

pd(a) € N
which is an instance of N-elimination, and

zpd(o) =0 €N,

pd(a') = a € N,

which we obtain by N-equality.

Using pd, we can derive the third Peano axiom

a' = b'eN

a=be€eN

Indeed, from a' = b' € N, we obtain pd(a') = pd(b') € N which, to-
gether with pd(a') = a € N and pd(b') = b e N, yields a = b € N by
symmetry and transitivity. We can also obtain it in the usual form

(Vx,y)(x' = y'D x = y), that is, in the present symbolism,

(Yx e M(Yy € M(I(N,x',y") D I(N,x,y)) true.



In fact, assume x‘e N, y e N and z € I(N,x',y'). By I—elimin;tion,
x' = y' € N; hence x = y € N, from which r € I(N,x,y) by I-intro-
duction. Then, by A-abstraction, we obtain that Ax) Ay)Az)r is a
proof (construction) of the claim.

Example (addition). We define
a+b = R(b,a,(x,y)y")-

The meaning of a + b is to perform b times the successor operation

on a. Then one easily dérives the rules:

aeN b €N

a+ beN

a e N' aeN beN

a+0=aeN a+b'=(a+Db)'eN

from which we can also derive the corresponding akioms of first
order arithmetic, like in the preceding example. Note again that the
equality here is not definitional.

Example (multiplication). We define
a- b = R(b,0,(x,y)(y + a)).

Usual properties of the product a - b can then easily be derived.

Example (the bounded F,-operator). We want to solve the problem:
given a boolean function f on natural numbers, i.e. f eVN —>N2, find
the least argument, under the bound a € N, for which the value of f is
true. The solution will be a function }L(x,f) e N (; eN, f e N—avNé)
satisfying:

the least b™% a such that Ap(f,b) = 02 e Nz,
if such b exists,
)L(a,f) =

a, otherwise.
Such a function will be obtained by solving the recursion equations:

)‘L(O,f) = 0e€N,

plat,f) = Rz(Ap(f,O),O,)x(a,'f)v) €N,

where F = (Ax)Ap(f,x') is f shifted one step to the left, i.e.
Ap(F,x) =. Ap(f,x') € N, (x € N). In fact, in case the bound is zero,
F(O’f) = 0 € N, irrespective of what function f is. When the bound has
successor form, F(a',f) = P(a,?)' € N, provided that f(0) = false =

12 (= Nz; otherwise, F(a',f) = 0 € N. Therefore to compute F(a,f), we
can shift f until the bound is 0, but checking each time if the value
at 0 is true = 02'or false 5512. Even if it admits of a primitive
recursive solution, the problem is most easily solved through higher

types, as we ‘shall now see in detail. We want to find a function

}L(x)- e (N—>N2)—»N (x e N) such that

p(0) = (\f)0 € (N—*Né);’N',

p(at) = MR, (AP(£,0),0,Ap(p(a) , F)") € (N =>N,) = N,

so that we can define the function P(a,f) we are looking for by
putting r&a,f) = Ap(P(a),f). The requirements on F(a) may be sat-
isfigdvthrough an ordinary primitive recursion, but on a higher type;

this task is fulfilled by the rule of N-elimination. We obtain
pa) = R(a, (A£)0,(x,y) AFIR,(Ap(£,0),0,Ap(y,)")) € (N-—=N,)—=>N

under the premisses a € N and f € N —>N2, and ‘hence



p(x,£) e N (x e N, f € N=>N,). _ Lists

i f a,f) € N looks as S . ;
Weithen oup 1o tree Loow Lus abows prool 9 r(" ) oo We can follow the same pattern used to define natural numbers

follows: ~ to introduce other inductively defined sets. We see here the examﬁle
“of lists. )
(fe N—»NZ) . . 3
(y € (N—>N2)-—N) fe NN, List-formation -
(feN—=>N,) OeN Ap(y,f) €N A set
= e e e
Ap(£,0) € N, oeN Ap(y,f)'e N List(A) set
0eN , R,(Ap(£,0),0,Ap(y,T)") € N : :
¢ where the intuitive explanation is: List(A) is the set of lists of

— v.F)r € )
.a €N (£ € (N—>N2) N ()\f‘)RZ(Ap(f,O),O,Ap(y,f) ) (N_’NZ)_’N elements of the set A (finite sequences of elements of A).

p@) = R(a, A0, (x,y) AR, (Ap(£,0),0,4p(y,T) 1)) € (N—>N,) >N feN-—=N

- ) List-introduction
p(a,f) = Ap(p(a),f) €N

4 a el b e List(A)
Observe how the evaluation of p(a,f) = Ap(p(a),f) : . nil e List(A)
. 3
AD(R(a,(Xf)O,(X,y)(Xf)RZ(Ap(f,O),O,Ap(y,F)')),f) proceeds. First, a (a.b) € List(4)
is evaluated. If the value of a is 0, the value of F(a,f) gquals the where we sy Also use the notatiod () = nil.

value of Ap((Af)0,f), which is 0. If, on the other hand, the value

of a is b', the value of r&a,f) equals the value of List-elimination

Ap((\F)R,(Ap(£,0),0,p(b,F) "), 1), (x €A, y e List(4), z € c(y))

which, in turn, equals the value of ‘ : e € List(a) d € C(nil) e(x,y,z) € C((x.y))

. listrec(e,d,(x,y,z)e(x,y,z)) € C(c)
RZ(Ap(f,O),O,y(b,f)').

where C(z) (z € List(A)) is a family of sets. The instructions to exe-
Next, Ap(f,0) is evaluated. If the value of Ap(f,0) is true = 0

_ 27 cute listrec are: first execute ¢, which yields either nil, in which
then the value of F&a,f) is 0. If, on the other hand, thg value of

case continue by executing d and obtain f e C(nil) = C(c), or (a.b)

Ap(f,0) is false =1,, then the value of p(a,f) equals the value with a € A and b € List(A); in this case, execute

< ® i
of F(b,f)'- e(a,b,listrec(b,d,(x,y,z)e(x,y,2))) which yields a canonical element



f e C((a.b)) = C(e). ir we put g(c) = 1listrec(e,d,(x,y,z)e(x,y,2)),
tﬁen:f is the value of e(a,b,g(b)). :
List-equality
(x e A,.y e List(pA), z € C(y))

d € Cc(nil)" e(x,y,z) € C((x.y))

listrec(nil,d, (x,y z)e(x,y,z)) = d € C(nilx
(x € A, y eList(A), z € C(y))

a e A b e List(A) d e C(nil) e(x,y,z) e C((x.y))

listrec((a.b),d,(x,y,z)e(x,y,2)) .
- e(a,b,listrec(b,d, (x,y,z)e(x,y,2))) € C((a.b))

Similar rules could.be given for finite trees and other induc-

tively defined cqncepté.

Wellorderings

The concept of wellordering and the principle of transfinite
induction were first introduced by Cantor. Once they had been for-
mulated in ZF, however, they lost their original computational con-
tent. We can cénstruct ordinals intuitionistically as wellfounded

trees, which means that they are no longer totally ordered.
W-formation

(x e4)

A set B(x) set

(Wx € A)B(x) set

What does it mean for ¢ to be an element of (Wx € A)B(x)? It means
that, when calculated, c¢ yields a value of the form sup(a,b) for
some a and b, where a € A and b is a function such that, for any
choice of an element v € B(a), b applied to Q yields a value
sup(a1,b1), where a, € A and b, is a function such that, for any

1 1

choice of v, in B(a1), b1

until in any case (i.e. however the successive choices are made) we

applied to v, has a value sup(az,bz), etec.,

" eventually reach a bottom element of the form sup(an,bn), where B(an)

is empty, so that no choice of an element in B(an) is possible. The
following picture, in which we loosely write b(v) for Ap(b,v), can
help (look at it from bottom to top):



b2(v2) = sup(a3,b3)

b(v) = sup(a1,b1)

¢ = sup(a,b)

By the preceding explanation, the following rule for introducing ca-

nonical elements is justified:
W-introduction

aec A b € B(a) — (Wx € A)B(x)

sup(a,b) € (Wx e A)B(x)

Think of sup(a,b) as the supremum (least ordinal greater than all) of
the ordinals b(v), where v ranges over B(a).

We might also have a bottom clause, 0 € (Wx € A)B(x) for in-
stance, but we obtain 0 by taking one set in B(x) set (x € A) to be
the empty set: if a, € A and B(ao) =-N0;_then Ro(y) e (Wx € A)B(x)

(y € B(ao)) so that sup(ao,(ky)Ro(y)) € (Wx € A)B(x) is a bottom el-
emepb. . . .

From the explanation of what an element of (Wx € A)B(x) is, wé
see the correctness of the elimination rule, which is at the.;ame‘
time transfinite induction and transfinite recursion. The épproprigte
principle of transfiﬁite induction is: if the property '

C(w) (w € (Wx € A)B(x)) is inductive (i.e. if it holds fof éll pre-

decessors Ap(b,v) € (Wx € A)B(x) (v € B(a)) of an element sup(a,b),

then it holds for sup(a,b) itself), then C(c) holds for an arbitrary

element ¢ € (Wx € A)B(x). A bit more formally,

(Vx € A)(Vy € B(x) = (Wx € A)B(x))

c € (Wx € A)B(x) (Vv e B(:g))C(Ab(y,v)) > C(sup(x,y))) true

C(e) true

Now we resolve this, obtaining the W-elimination rule. One of the

premisses is that C(sﬁp(x,y)) is true, provided that x € A,

¥y € B(x) > (Wx € A)B(x) and (Vv € B(x))C(Ap(y,v)) is true. Letting

d¢x,y,z) be the function which gives the proof of C(sup(x,y)) in
terms of x € A, y € B(x) — (Wx € A)B(x) and the proof z of
(Vv eB(x))C(Ap(y,v)), we arrive at the rule

W-elimination

(x € A, y € B(x)— (Wx € A)B(x), z € (TIv €B(x))C(Ap(y,v)))

c e (Wx € A)B(x) d(x,y,2) € C(sup(x,y))

T(e, (x,y,2)d(x,y,2)) € C(e)

where T(c,(x,y,z)d(x,y,z)) is executed as follows. First execute c,
which yields sup(a,b), where a € A and b € B(a)— (Wx € A)B(x). Select
the components a and b and substitute them for x and y in d, obtaining
d(a,b,z). We must now substitute for z the whole sequence of previous
function values. This sequence is (Av)T(Ap(b,v),(x,y,z)d(x,y,2)), be-
cause Ap(b,v) € (Wx € A)B(x) (v € B(a)) is the function which enumer-
ates the subtrees (predecessors) of sup(a,b). Then
d(a,b,(Av)T(Ap(b,v),(x,y,2z)d(x,y,2))) yields a canonical element

e € C(c) as value under the assumption that

T(Ap(b,v),(x,y,2z)d(x,y,z)) € C(Ap(b,v)) (v € B(a)).
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If we write f(e) = T(e,(x,y,z)d(x,y,2z)), then, when c yields | We can give pictures:
sup(a,b), f(c) yields the same value as d(a,b,(Av)f(Ap(b,v))). This
explanation also shows that the rule (1) ir
W-equality
(x € A, y - eB(x) —(Wx €B)B(x), z e ([Tv e B(x))C(ap(y,v)))
a €A be B(a)—>(Wx e A)B(x) - d(x,y,z) € C(sup(x,y)) : is in ¢, then we can build the successor «o:

T(sup(a,b), (x,y,z)d(x,y,Z))
= d(a,b,(Av)T(Ap(b,v),(x,y,z)d(x,y,2))) € C(sup(a b))

is correct. .

) Examgie (the firsﬁ number class). Having access to the W-oper-
ation and a family of sets B(x) (x € N2) such that B(02) = N, and : : (2) ir
B(12) = N1, we may define the first number class as (Wx € NZ)B(x)

instead of taking it as primitive. s e
Example (the second number class). We give here the rules for a ' :

simple set of ordinals, namely the set O of all ordinals of the sec- .

ond number class, and show how they are obtained as instances of the is a sequence of.or-d.inals in. O, then we can build the supremu
. m

general rules for wellorderings. . sgp(or ):
. n
O-formation
U set

Cantor generated the second number class from the 1nitial ordinal 0

by applying the following two principles: : . : So U will be inductively defined by the three rules:
(1) given xe U, form the successor «' e J; » @O -introduction
(2) given a sequence of ordinals o(o, 0(1, 21 se- in O, form the : .
, ' . aeQd beN— O
least ordinal in ) greater than each element of the sequence. 0e@ i

a'e® sup(b)e O




Transfinite induction over (J is evident, and it is given by

(x e U, c(x) true) (z e N>, (Vn e N)C(Ap(z,n)) true)
ce(d C(0) true C(x') true C(sup(z)) true

C(c) true

where C(z) (z € ) is a property over O. Writing it with proo_t‘s,
we obtain
C-elimination
(xed, yeCx) (ze N>, w € (TIn € N)C(Ap(z,n))

ced d € C(0) e(x,y) € C(x") f(z,w) € C(sup(z))

T(e,d,(x,y)e(x,y),(z,w)f(z,w)) € C(ec)

where the transfinite recursion operator T is executed as follows.

First, execute c. We distinguish the three possible cases:

if we get 0 € @ , the value of T(e,d,(x,y)e(x,y),(z,w)f(z,w))
is the value of d € C(0);

if we get a', then the value is the value of

e(a,T(a,d,(x,y)e(x,y),(z,w)f(z,w)));

if we get sup(b), we continue by executing

f(b, Ax)T(Ap(b,x),d,(x,y)e(x,y),(z,w)f(z,w))).

In any case, we obtain a canonical element of C(c) as result.
It is now immediate to check that we can obtain all (-rules
(including (J-equality, which has not been spelled out) as instances

of the W-rules if we put

= (Wx e N3)B(x)

where B(x) (x € N ) is a family of sets such that B(O ) = N

B(I ) = N’1 and B(2 ) = N. Such a fa;mily can be constructed by means

“of t:he universe rules.

Example (initial elements of wellorderings). We want to show
that, if at least one index set is empty, then the wellordering
(Wx ¢ A)B(x) is nonempty. Recall that we want to do it intuition-
istically, and recall that A true is equivalent to A nonempty, so

that —A true is equivalent to A empty. So our claim is:
(3x € A) "B(x)— (Wx e A)B(x) true.

To see this, assume x € A, y € =B(x) and v € B(x). Then

Ap(y,v) € No = | and hence RO(Ap(y,v)) € (Wx € A)B(x), abplying
the rule of No-elimination. We now abstract on v to get

(AV)R (Ap(y,v)) € B(x) — (Wx € A)B(x) and, by W-1ntroductlon,
sup(x (AV)R (Ap(y,v))) € (Wx e A)B(x). Assuming z € (£ x e A)—B(x),

by T -e11minat10n, we have
E(z,(x,y)sup(x,()\v.)RO(Ap(y,vv)))) € (Wx € A)B(x),

from which, by A-abstraction on z,»

()\z)E(z,(x,y)sup(x,()w)Ro(Ap(y,v)))) e (x e A.) —B(x) — (Wx € A)B(x).

We now want to show a converse. Howevér, riote that we cannot
have (Wx € A)B(x) — (3 x € 4) ~B(x) true, because of the intuition-

istic meaning of the existential quantifier. But we do have:
(Wx € A)B(x)— —(Vx € A)B(x) true.

Assume x € A, y € B(x) — (Wx € A)B(x) and z G‘B(x)—>No. Note that
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B(x) — NO = (Tlv e B(x))C(Ap(y,v)) for c(w) = NOf so that we can
apply the rule of W-elimination. Assuming f € (T1x e A)B(x), we have
Ap(f,x) € B(x), and hence also Ap(z,Ap(f,x)) € NO. Ap(z,Ap(f,x))
takes the role of d(x,y,z) in the rule of W-elimination. So, if we
assume w € (Wx € A)B(x), we obtain T(w,(x,y,z)Ap(z,Ap(f,x))) e NO.

Abstracting on f, we have
(XF)T(w,(x,y,z)Ap(z,Ap(f,x))) € —(Vx € A)B(x),
and, abstracting on w, we have

(kw)(%f)T(w,(x,y,z)Ap(z,Ap(f,x))) e (Wx € A)B(x)—~ —(Yx € A)B(x).
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Universes

So far, we only have a structure of finite types, because we

‘‘can only iterate the given set forming operations starting from

I(A,a,b), No, N1, ... and N a finite number of times. To strengthen
the language, we can add transfinite types, which in our language
are obtained by intréducing universes. Recall that there can be no
éet of all sets, because we are not able to exhibit oﬁce and for all
all possibie set forming operations. (The set of all sets would have
to be defined by prescribing how to form its canonical elements, i.e.
sets. But this is impossible, since we can always perfectly well de-
scribe new sets, for instance, the sét of all sets itself.) However,
we need sets of sets, for‘instance, in category theory. The idea is
to define a universe as the least set closed under certain specified

sétifOrming operations. The operations we have been using so far are:

(x eA) (x €A)
A set  B(x) set A set B(x) set A set B set
(TTx € A)B(x) set (Ix € A)B(x) set A + B set
(x €4)
A'set b, c €A ‘A set B(x) set
N0 set N1 set ... N set
I(A,b,c) set (Wx e A)B(x) set

There are two possible ways of building a universe, i.e. to obtain
éloéure.under possibly transfinite iterations of such operations.
Formulation & la Russell. Consider TI, L , ... both as set

forming operations and as operations to form canonical elements of



the set U, the universe. This is like in raﬁifiéd type theory.

" Formulation a la Tarski. So called because of the similarity
between the family T(x)(x € U) below and Tarski's truth definition.
We use new symbols, mirroring (reflecting) T1, X , ..., to build the
canonical'eiements of U. Then U consistsAof indices of sets (like in

recursion theory). So we will have the rules:

U-formation

a el

U set —_—
T(a) set

U and T(x)(x € U) are defined by a simultaneous transfinite induction,

which, as usual, can be read off the following introduction rules:

U-introduction
(x € T(a)) ‘(x e T(a))
acl b(x) €U aedU b(x) e U

w(a,(x)b(x)) €U T(w (a,(x)b(x))) = (TIx € T(a))T(b(x))

(x e T(a)) (x eT(a))

ael b(x) e U acl b(x) e U

(Zx € T(a))T(b(x))

o(a,(x)b(x)) € U T( o (a,(x)b(x)))

ae Ul bedU a€evu bel

a+belU T(a + b) = T(a) + T(bz_

ael beT(a) ¢ e T(a)

a€l beT(a) c eT(a)

i(a,b,e) € U

(x € T(a))

ael b(x)eu

T(i(a,b,c)) = I(T(a),b,c)

T(ng) = Ny T(n)) =w, .

T(n) = N

(x € T(a))

acvu © b(x) eU

w(a,(x)b(x)) e U

_We could at this point iteréte the process,

T(w(a, (x)b(x))) = (Wx e T(a))T(b(x))

verse U' with the two new introduction rules:

u.€

aeu
—

t(a) € U

then a third universe U", .and so on.

In the formulation i 1a Russell,

T'(u) =U

aevu
_—
T'(t(a)) = T(a)

T disappears and we. only use

cap;talvletteraf So the above rules are turned into:

Uaformatiqn

U set

A eU

A set -

obtaining-a second uni-



U-introduction

(x € A) ) . (XéA)

AeU B(x) € U AeU B(x) € U

(TTx € A)B(x) € U (_Zx € A)B(x) €U

A evU BeU aeu b, c €A
A+B<eU ’ I(A,b,c) €U
L. NeU
Ny € U N, €U
(x €4)
AecU B(x) €U

(Wx € A)B(x) €U

However, U itself is not an elemnt of U. In fact, the axiom U € U

13 .
leads to a contradiction (Girard's paradox ~). We say that a set A is

small, or a U-set, if it has a code a € U, that is, if there is an
element a € U such that T(a) = A. More generally, a family )
A(x1,...,x ) (x € Ay veey X € A (x1,...,xn 1)) is said’to be small
provided A(x1,...,x ) = T(a(x1,...,x )) (x e Al' -

x € A (x1,...,x )) for some indexing function a(x1,...,x ) €. U

(x € A cees X

is closed under the operations L , T, ete. U is a perfectly good set,

€A (x1,...,x )) So the category of small sets

13 J. Y. Glrard Interprétation fonctlonnelle et elimlnation des
coupures de 1'arithmétique d'ordre supérieur, These, Université Paris
ViIi, 1972.

but it is not small. Using U, we can form transfinite types (using é
recursion with value in U, for instance).

The set V = (Wx€U)T(x) (or, in the formulation a la Russell,
simply (WX € U)X) has been used by Aczel1u to give meaning to a con-
structive version of Zermelo-Fraenkel set theory via intuitionistic
type theory.

Example (fourth Peano axiom). We now want to prove the fourth
Peano axiom, which is the only one not trivially derivable from our

rules. So the claim is:
(Vx € N) -I(N,0,x') true.

We use U-rules in the proof; it is probably not possible to prove it
otherwise. From N set, 0 € N, x € N we have x' € N and I(N,0,x') set.
Now assume y € I(N,0,x'). Then, by I-elimination, 0 = x' € N. By U-in-

troduction, ny € U and n, e U. Then we define f(a) = R(a,no,(x,y)n1),

so that f(0) = n, € U and f(a') = n, € U provided that a € N. From

0 = x' € N, we get, by the equality part of>the N-elimination rule,

R(O,no,(x,y)h1) z R(x',no,(x,y)n1) € U. But R(O,no,(x,y)nl) = n, €U

and R(x',no,(x,y)n1) = n, € U by the rule of N-equality. So, by symme-

try and transitivity, n, =n, € U. By the (implicitly given) equality
part of the U-formation rule, T(no) = T(n1). Hence, from T(no) = Nb
and T(n1) =z N1,'N = N,. Since 0 EFNI, we also have 01 € NO. So

0 1 1 (
(A\y)0, € I(N,0,x') —N; and QAx)Ay)0, € (Vx € N) 7I(N,0,x").
We remark that, while it is obvious (by reflecting on its mean-
ing) that 0 = a' € N is not provable, a proof of —I(N,0,a') true

seems to involve treating sets as elements in order to define a pro-

positional function which is 1l on0and T ona'.

14 )
P. Aczel, The type theoretic interpretation of constructive

“set theory, Logic Colloquium-77, Edited by A. Macintyre, L. Pacholski

and J. Paris, North-Holland, Amsterdam, 1978, pp. 55-66. .
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