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Complexity Oscillations in Infinite Binary Sequences

PER MARTIN-LOF

We shall consider finite and infinite binary sequences obtained by tossing
an ideal coin, failure and success being represented by 0 and 1, respectively. Let
S,=X;+X,+---+x, be the frequency of successes in the sequence x;x,...x,.
Then, for an arbitrary but fixed n, we know that the deviation of s, from its
expected value n/2 is of the order of magnitude ]/E provided we neglect small
probabilities. On the other hand, if we consider the initial segments of one and
the same infinite sequence x; x,...X,..., the law of the iterated logarithm tells
us that from time to time the deviation s, —n/2 will be essentially bigger than ﬂ,

the precise order of magnitude being )/nlog log n. In other words, there will be
ever recurring moments # when the initial segment x; x, ... x,, considered as an
element of the population of all binary sequences of the fixed length n, is highly
non random.

According to Martin-Lof 1966, the conditional complexity K(x;x,...x,|n)
in the sense of Kolmogorov 1965 may be regarded as a universal measure of the
randomness of the sequence X, x,...x, considered as an element of the popula-
tion of all binary sequences of length n, and, if we, to be more precise, define the
sequence x;x,...x, to be random on the level e=27°if K(x;x,...x,|n)=n—c,
then the proportion of the population made up by the elements that are random
on the level ¢ is greater than 1—e. We shall show that the phenomenon degscribed
in the previous paragraph is general in the sense that it occurs when the random-
ness of x;x;...x, is measured by K(x; x,...x,|n) instead of the deviation of s,
from n/2, the latter representing just one aspect of the randomness of the sequence
X{Xg .. Xy

Theorem 1. Let f be a recursive function such that

e8]
Y 20— 4,

n=1
Then, for every binary sequence x,;X,...%,...,

K{x;x,...x,Jn)<n—f(n)
Sor infinitely many n.

Note that, in contrast to the law of the iterated logarithm and related theo-
rems of probability theory, the assertion of Theorem 1 holds for all sequences
X;X3...%,... and not only with probability one.

In an earlier version of this paper (Martin-Lof 1965) the theorem was proved
for the unconditional complexity K(x; x,...x,) instead of the conditional com-
plexity K(x;x,...x,|n). Since K(x{x,...x,/n)<K(x;x,...x,)+c for some con-
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stant ¢ but not vice versa, the earlier form of the theorem is slightly stronger
than the present one.

Proof. We first replace f by a slightly more rapidly growing recursive function
g such that w
Y 278 =4 oo

n=1

and
gn)—f(m)t+o00 as n—oo.

For example, put n,=0 and let n,,, , be the smallest integer greater than n,, such
that

Y 2-Smzom =01, ...

M+ 1
We can then define g by putting
gw)=fmy+m if n,<n=Zn, ;.

Consider now the tree o

of all finite binary sequences, those of the same length being ordered as indicated
from the top to the bottom with the extra convention that 00...0 is to follow
after 11...1. For every n=0, 1, ... we shall define a certain set A4, of binary se-
quences of length n. 4, is to contain the empty sequence [J. Suppose now that

Ags ooy AnED,  Apoi==A4,_,=0

have been defined already, and let x;x,...x, be the last sequence in A4,,. If
g(n)<n, then A, is to contain the 2"~2™—1 sequences of length n that follow
immediately after x; x,...x,11... 1, and, if g(n)=n, then A4, is to be empty.

Letting u denote the coin tossing measure, we have

27EW 2" if g(n)<n

g (A"):{O if g(mzn

for n=1,2, ..., so that, under all circumstances,

p(A,)z278m 2",
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Consequently, "
2 1l(dy)=+o0
n=1
which forces the sets A4;, 4,, ..., 4,, ... to circle around the tree of finite binary

sequences an infinite number of times. Therefore, if x; x, ... x,... is a fixed infinite
sequence, the initial segment x, x, ... x, will belong to A, for infinitely many n.

Let B(p,n) be an algorithm which enumerates A, as the program p runs
through 1,0, 1,00, 01, ... until 4, is exhausted. When the length of pis Zn—g(n)
we may let B(p, n) remain undefined. Clearly,

Kp(x1 ;... x,|n)<n—g(n)

if and only if x; x,...x, belongs to 4,. On the other hand, by the fundamental
theorem of Kolmogorov 1965,

K(xyxg... x| W) < Kg(xy x5...x,/0) +¢
for some constant ¢, and g was constructed such that

gmz f(m+c

if n>n,. Consequently, for every infinite sequence x; x,...x,...

K(x;x5...x,n)<n—f(n)

for infinitely many #n as was to be proved.

The construction carried out in the course of the proof is similar to one used
by Borel 1919 in connection with a problem of diophantine approximations.

Theorem 2. Let f be such that

Y27 W< oo,

n=1

Then, with probability one,
K(x;xy...x,|n)Zn—f(n)
Sor all but finitely many n.

Proof. The number of sequences of length n for which
K(xx5...x,0n)<n—f(n)

is less than 27~/ Thus, the probability that this inequality is satisfied is less
than 2-7®, and the theorem now follows from the lemma of Borel and Cantelli.

Theorem 3. Let f be a recursive function such that

2—fm
1

s

n
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is recursively convergent. Then, if x,x,...x,... is random in the sense of Martin-
Léf 1966,
K(x;x5...x,/n)=n—f(n)

for all but finitely many n.

s8]
Proof. That ) 27/® is recursively convergent means that there is a recursive
n=1
sequence #y, n,, ..., h,, ... such that

a0
Y 27/m<gom o m=1,2, ...
Nm+1
Let U, be the union of all neighbourhoods x; x,...x, for which n>n, and
K(x;x,...x,/n)<n—f(n). Since the latter relation is recursively enumerable,
U,U,,...,U,, ... is a recursive sequence of recursively open sets. Furthermore,

uwU,)< Y 27/m<amm
Hm+1

so that () U, is a constructive null set in the sense of Martin-Lof 1966 and
m=1

hence contained in the maximal constructive null set whose elements are pre-

cisely the non random sequences.

Let f be a (not necessarily recursive) function such that

e e}

Y277 0.

n=1

Then, the set of all sequences x; x,...x,... such that

Ky, x, (W) Z - f ()

for all but finitely many # is not measurable in the sense of Brouwer 1919, except
in the trivial case when n—f(n) is bounded. Suppose namely that it were Brou-
wer measurable. Its measure in Brouwer’s sense would then have to equal one
and, in particular, be positive. Hence, it would contain a recursive sequence
e, e,...e,.... But for a recursive sequence ¢ e,...e,... there exists a constant ¢

such that
K(el €-.. enln)éc

for all n. On the other hand, K(e, e, ...e,|n)=n—f(n) for all but finitely many n
so that n—f(n) must be bounded.
Theorem 4. With probability one, there exists a constant ¢ such that
Ky xy...x,ln)=Zn—c
for infinitely many n.

Proof. Let A,, denote the set of infinite sequences x;x,...x,... for which
K{x;xy...x,/n)Zn—c. Then

i (U Aa) 20l >1-27
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so that

v

u(m UAM) 2.
m=1 n=m

Consequently,

N

o o)
(U N Uda)=t
¢c=1 m=1 n=m
as was to be proved.
Theorem 5. If there exists a constant ¢ such that
K(xyx;...x,|nm)=n—c
for infinitely many n, then the sequence x,;X,...x,... is random in the sense of
Martin-Lof 1966.

Proof. Let my(x, x,...x,) denote the critical level of x; x,...x, with respect
to the universal sequential test constructed by Martin-Lof 1966. Since a sequential
test is so much more a test without the sequentiality condition, there is a constant

¢ such that
My(X; Xy .. X)) Em(X X5... X,)+¢

where m(x; x, ... x,) denotes the non sequential critical level. On the other hand,
m(x; X,...x,) and n— K{(x, x, ... x,|n) differ at most by a constant. Consequently,

My (X Xg ... X0 Sn—K(x;X5...x,|0)+¢
for some other constant ¢ so that

lim my (x, x; ... x,) <lim inf(n— K(x, x5 ... x,|n)) +c.

n— oo
Thus, if the assumption of the theorem

lim inf(n— K(x; x; ... X,|n)) < + o0

is satisfied, then
lim my (3 X5 ... X,) < + 00
H— ©

which means precisely that the sequence x; x,...x,... is random.
Combining Theorem 3 and Theorem 5, we arrive at the following conclusion.

o0
If f is a recursive function such that ) 27/ converges recursively and

n=1
K(xyx,...x,/n)2n—c
for some constant ¢ and infinitely many n, then
K(x,x;...x,/n) 2 n—f(n)

for all but finitely many n. This result, which shows the relation between the
upward and downward oscillations of the complexity, was announced without
proof by Martin-Lof, 1965.
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