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Complexity Oscillations in Infinite Binary Sequences 

PER MARTIN-LOF 

We shall consider finite and infinite binary sequences obtained by tossing 
an ideal coin, failure and success being represented by 0 and 1, respectively. Let 
sn=x 1 + x  2 + ... + x ,  be the frequency of successes in the sequence xl x 2 ... x,.  
Then, for an arbitrary but fixed n, we know that the deviation of s, from its 
expected value n/2 is of the order of magnitude 1 ~  provided we neglect small 
probabilities. On the other hand, if we consider the initial segments of one and 
the same infinite sequence xl x2.. .  x , . . . ,  the law of the iterated logarithm tells 
us that from time to time the deviation s, - n/2 will be essentially bigger than ]fn, 

the precise order of magnitude being ~ l o g  n. In other words, there will be 
ever recurring moments n when the initial segment x~ xz . . .  x , ,  considered as an 
element of the population of all binary sequences of the fixed length n, is highly 
non random. 

According to Martin-L6f 1966, the conditional complexity K(x~xa. . .x , [n)  
in the sense of Kolmogorov 1965 may be regarded as a universal measure of the 
randomness of the sequence xl x2.. .  x, considered as an element of the popula- 
tion of all binary sequences of length n, and, if we, to be more precise, define the 
sequence x l x z . . . x  . to be random on the level ~=2 -c if K(XlXz . . . x , [n )>=n-c  , 
then the proportion of the population made up by the elements that are random 
on the level e is greater than 1 -a .  We shall show that the phenomenon described 
in the previous paragraph is general in the sense that it occurs when the random- 
ness of x 1 x 2 . . . x  n is measured by K(x l x z . . . xn [n  ) instead of the deviation of s, 
from n/2, the latter representing just one aspect of the randomness of the sequence 

X 1 X 2 . . .  X n . 

Theorem 1. Let f be a recursive function such that 

~ 2 - f ( n ) =  -'{- o0. 
n=l  

Then, for every binary sequence xl x2. . .  x , . . . ,  

K(x l  X 2 . . .  X n In) < n - f  (n) 
for infinitely many n. 

Note that, in contrast to the law of the iterated logarithm and related theo- 
rems of probability theory, the assertion of Theorem 1 holds for all sequences 
XlXz... x , . . .  and not only with probability one. 

In an earlier version of this paper (Martin-L6f 1965) the theorem was proved 
for the unconditional complexity K(x  l x z . . ,  x,) instead of the conditional com- 
plexity K(x  1 x2. . .  x ,  ln). Since K(x~ x2.. .  x ,  ln) < K(x l  xz . . .  Xn)'q- C for some con- 
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stant c but  no t  vice versa, the earlier form of the theorem is slightly stronger 
than the present one. 

Proof. We first r e p l a c e f  by a slightly more  rapidly growing recursive function 
g such that  oo 

2 -  g (") = + oo 

and , = 1 
g(n)-f(n)$+oo as n-+ oo. 

For  example, put  n o = 0 and let n m +, be the smallest integer greater than n m such 
that 

r i m +  i 

2 - Y ( ' ) > 2  m, m = 0 ,  1, .... 
nrn+ l 

We can then define g by putt ing 

g(n)=f(n)+m if n,.<n<=nm+l. 
Consider  now the tree 

, , ~ , ~ 0 0 0 ~  

0 ~176 

�9 110 ~ 

~ 1 1 1 ~  

of  all finite binary sequences, those of  the same length being ordered as indicated 
f rom the top to the bo t t om with the extra convent ion that  00.. .  0 is to follow 
after 11... 1. For  every n = O, 1, ... we shall define a certain set A,  of  binary se- 
quences of  length n. A o is to contain the empty  sequence [3. Suppose now t h a t  

A o , . . . , A m # O ,  Am+l . . . . .  A,_a=O 

have been defined already, and let x~x 2...x,, be the last sequence in Am. If 
g(n)<n, then A, is to contain the 2 " - g ( ' ) - 1  sequences of length n that  follow 
immediately after x~ x2.. .  xm 11... 1, and, if g (n )>  n, then A, is to be empty. 

Lett ing # denote the coin tossing measure, we have 

{~-g(')-2-'ifg(n)<n 
# (A,) = if g (n) > n 

for n = l, 2 . . . . .  so that, under  all circumstances, 

p(A,) > 2 - g ( ' ) -  2 - ' .  
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Consequently, 

~ , #  (An)  = + oo 
r~=l  

which forces the sets A1, A2, ..., A n, ... to circle around the tree of finite binary 
sequences an infinite number of times. Therefore, if Xl x2.. .  xn... is a fixed infinite 
sequence, the initial segment xl  x2 . . .  Xn will belong to A, for infinitely many n. 

Let B(p, n) be an algorithm which enumerates An as the program p runs 
through D, 0, 1, 00, 01 . . . .  until A n is exhausted. When the length ofp  is > n - g ( n )  
we may let B(p, n) remain undefined. Clearly, 

K B(x 1 x2...  x.]n) < n -  g(n) 

if and only if x 1 xa. . .  x, belongs to A,. On the other hand, by the fundamental 
theorem of Kolmogorov 1965, 

K ( x l  X 2  . . .  x ,  ln) ~ KB(xl  x2 ... x ,  ln) + c 

for some constanl c, and g was constructed such that 

g(n) > f (n )  + c 

if n > n c. Consequently, for every infinite sequence xl x2.. .  xn.. . ,  

K (x I x 2 ... x ,  t n) < n - f  (n) 

for infinitely many n as was to be proved. 

The construction carried out in the course of the proof is similar to one used 
by Borel 1919 in connection with a problem of diophantine approximations. 

Theorem 2. Let  f be such that 

~ 2  f < + ~ .  (n) 

n=l 
Then, with probability one, 

K(x I  x2 . . .  Xn In) > n - - f  (n) 

for  all but f in i te ly  many n. 

Proo f  The number of sequences of length n for which 

K(xl x2... x,, In) < n - f  (n) 

is tess than 2 "--c(n}. Thus, the probability that this inequality is satisfied is less 
than 2 I(n), and the theorem now follows from the lemma of Borel and Cantelli. 

Theorem 3. Let  f be a recursive function such that 

~ 2-f(n) 
n=l 



228 P. Martin-L6f: 

is recursively convergent. Then, if xl x2... x , . . .  is random in the sense of Martin- 
L6f 1966, 

K(x 1 x2... x, In) >= n - f  (n) 
for all but finitely many n. 

Proof That  ~. 2 -s(") is recursively convergent means that there is a recursive 
n = l  

sequence nl, n 2 . . . . .  nm, ... such that 

~2-f( ' )<=2-m, m = l ,  2 , . . . .  
n m + l  

Let U,, be the union of all neighbourhoods xl x2...  x, for which n >  n,, and 
K(x,  x2 . . . x , [n )<n- f (n ) .  Since the latter relation is recursively enumerable, 
U1, U2 . . . . .  Urn, ... is a recursive sequence of recursively open sets. Furthermore,  

#(Urn)< ~, 2--f(n)<____2 -m 
n m + l  

so that (~ U,, is a constructive null set in the sense of Martin-LSf 1966 and 
r n = l  

hence contained in the maximal constructive null set whose elements are pre- 
cisely the non random sequences. 

Let f be a (not necessarily recursive) function such that 

~ 2 -f(") < q- ct3. 
n = l  

Then, the set of all sequences Xl x2.. .  x , . . .  such that 

U (xa x2 . . . x,  l n) > n - f  (n) 

for all but finitely many  n is not measurable in the sense of Brouwer 1919, except 
in the trivial case when n - f  (n) is bounded. Suppose namely that it were Brou- 
wer measurable. Its measure in Brouwer's sense would then have to equal one 
and, in particular, be positive. Hence, it would contain a recursive sequence 
e 1 e 2 . . .  e n . . . .  But for a recursive sequence el e 2 . . .  e n . . .  there exists a constant c 
such that 

K(elez...e,,In)<=c 

for all n. On the other hand, K(el ez... e, l n )>n- f (n )  for all but finitely many n 
so that n - f  (n) must be bounded. 

Theorem 4. With probability one, there exists a constant c such that 

K(x,  x2 . . . x ,  l n ) > n - c  
for infinitely many n. 

Proof. Let Ac, denote the set of infinite sequences x, x z . . . x , . . ,  for which 
K ( x l x z . . . x n l n ) ~ n - c .  Then 

(Q) # A~, >#(A~,,)> 1 - 2  -~ 
n-- 
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so that 

Consequently, 

co 

p Ac .  = 1 
- - 1  m ~  l n = m  

as was to be proved. 

Theorem 5. I f  there ex i s t s  a constant  c such that  

K ( x l x z . . . x ,  l n ) > = n - c  

f o r  inf ini te ly  many  n, then the sequence x l  x 2 . . .Xn . . .  is random in the sense o f  

M a r t i n - L O f  1966. 

Proof.  Let m v ( x l  x 2 ... Xn) denote the critical level of xa x 2 . . .  x n with respect 
to the universal sequential test constructed by Martin-LSf 1966. Since a sequential 
test is so much more a test without the sequentiality condition, there is a constant 
c such that 

m U (x I x 2 . . .  Xn) ~ m (x i x2.. .  Xn) + C 

where m(x~ x 2 . . .  x , )  denotes the non sequential critical level. On the other hand, 
m(x~ x 2 . . .  x , )  and n - K ( x  I x 2 . . .  Xn] n) differ at most  by a constant. Consequently, 

my (xl  x2 . . . x , )  < n -  K (xl  x z  . . . x ,  ln) + c 

for some other constant c so that 

lim my (xl  x 2 . . .  x , )  < lim i n f ( n -  K ( x  I X 2 . . .  X n In)) + C. 
n ~ o o  n ~ c o  

Thus, if the assumption of the theorem 

lim i n f ( n -  K ( x  I x z  ... xn[ n)) < + Go 

is satisfied, then 
lira m v ( x  1 x 2 . . .  x , )<  + oo 

n ~ o o  

which means precisely that the sequence x 1 x 2 . . .  Xn.. .  is random. 

Combining Theorem 3 and Theorem 5, we arrive at the following conclusion. 

I f f  is a recursive function such that ~ 2 -I(") converges recursively and 
n = l  

K ( x l x 2 . . . x ,  l n ) > = n - c  

for some constant c and infinitely many  n, then 

K ( x  1 x 2 . . .  Xnl n) >= n - - f  (n) 

for all but finitely many  n. This result, which shows the relation between the 
upward and downward oscillations of the complexity, was announced without 
proof  by Martin-LSf, 1965. 
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