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Intuitive considerations 

Through the technique of so called lazy evaluation, it has 

become possible to compute with infinite objects of various 

kinds. The most typical and wellknown example is that of a stream 

( a o ~ ( a l , ( a 2 , . . o ) ) ) ,  

which at any finite stage of its development looks like an ini- 

tial segment of an ordinary list 

( a o , ( a l , ( a  2 . . . . .  ( a n _ l , n i l ) . . . ) ) ) ,  

but differs by proceeding indefinitely. Another example is ob- 

tained by conceiving of an infinite binary sequence as an in- 

finite composition of two unary constructors 

o ( ] ( o ( . . . ) ) ) ,  

rather than, as is customary, as a function from the set of natu- 

ral numbers to the two element set. An even simpler example, the 

simplest possible, in a way, which will play a central role in 

the following, is the infinite natural number 

s ( s~s ( . . . ) ) ) ,  

the successor of the successor of the successor of etc. in in- 

finitum. No other mathematical object, if only we can understand 

it as such, deserves better to be denoted by the traditional in- 

I finity symbol ~. 

I 
Introduced by J. Wallis, De Sectionibus Conicis, Nova 

Methodo Expositis, Tractatus, Oxford, 1655, in the laconic paren- 
thesis (esto enim ~ nota humeri infiniti;), apparently without 
worrying about its meaningfulness. 
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All the preceding examples are examples of infinite elements 

of sets. But we may also let sets be infinite, not in the usual 

sense of containing infinitely many elements, but in the sense of 

having infinite depth, or proceeding indefinitely, like 

A X(A X(A X . . . ) ) ,  

where the set A may itself be infinitely proceeding, or 

((...) + (...)) + ((...) + (...)). 

The latter set is the disjoint union of two sets, each of which 

is the disjoint union of two sets, each of which is the disjoint 

union of two sets, etc. in infinitum. It looks very much like the 

Cantor set. 

If we can conceive of infinitely proceeding sets, we can 

certainly also conceive of infinitely proceeding propositions: 

because of the correspondence between propositions and sets, 

there is no substantial difference. A typical example is 

NNNO.. = ((... oi) od.)~_t, 

the negation of the negation of the negation of etc. in infini- 

tum. Since such an infinitely proceeding proposition has no bot- 

tom that you reach in a finite number of steps, it is not at all 

immediately clear what it should mean for it to be true. Nor does 

it seem clear whether this particular one ought to come out true 

or false. (To anticipate matters, on the interpretation that I 

shall adopt, it will come out false.) 

An infinite object of yet another kind is the iterative set, 

that is, set in the sense of the cumulative hierarchy, 
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It is the singleton set whose only element is the singleton set 

whose only element is the singleton set etc. in infinitum. No 

such set exists, of course~ in the usual cumulative hierarchy, 

but it is as simple as possible an example of a nonwellfounded 

2 set in the sense of Aczel. Finally, you may even conceive of 

nonmathematical examples of infinite objects, like the wellknown 

picture of the artist painting his own portrait. 

When you start thinking about infinite objects, like the 

aforementioned ones, you soon realize that they are maybe not so 

novel creatures after all. We have also old examples, like in- 

finite decimal fractions 

aooala2a3 .... ao + ~o(al + ~o(a2 + ~o(a3 + ...))) 

and infinite continued fraction expansions 

a 0 + 
b 0 

b I 
a I + 

a 2 + 
b 2 

a 3 + ..., 

which proceed indefinitely in just the same way as the streams 

of the computer scientist. ~ud we all know the mathematics that 

has been developed in order to deal rigorously with these par- 

ticular infinite objects, namely, calculus, or analysis, in its 

2 P. Aczel, Non-Well-Founded Sets, CSLI Lecture Notes, 
Number 14, Stanford University, 1988. 
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various forms. Originally, from its inception to the time of 

Euler, approximately, infinitesimal calculus was really a cal- 

culus of infinites and infinitesimals, that is, of infinitely 

large and infinitely small quantities, like 

and 

I I I 
' 2 '  " ' "  

respectively. But, when it was put on a rigorous basis by Cauchy 

and Weierstrass, the infinites and infinitesimals were gradually 

eliminated in favour of the notion of limit, earlier introduced 

by d'Alembert, although traces of them still remain in some of 

our notations, like 

mo l~o 

lima n , Z an, nTylan , . . .  

n=o@ n= l  

Usually, though, we take great pains to explain that ~ makes 

no sense by itself, that is, is no detachable part of the nota- 

tion for a limit, an infinite sum, product, or the like, and 

would have difficulties in interpreting an expression like 

(1 + --~)~ . 

Only during the period of the last thirty years has there been 

a resurgence of interest in infinite and infinitesimal numbers 

as a result of Abraham Robinson's conception of his nonstandard 



151 

analysis. 3 There is also the slightly earlier but less wellknown 

infinitesimal calculus of Schmieden and Laugwitz, which succeeds 

in making sense of expressions containing the infinity symbol 

in a much more elementary and constructive way. 4 Otherwise, all 

these various forms of analysis are classical theories. On the 

intuitionistic side, we have, on the one hand, the straight- 

forward constructivization of analysis in the style of Cauchy 

and Weierstrass carried out by Bishop, 5 and, on the other hand, 

6 Brouwer's much more radically novel idea of choice sequences. 

It is one of the purposes of the present work to show that the 

introduction of choice sequences is an intuitionistic version 

of the formation of reduced products in nonstandard analysis. 

(Observe that the theory of choice sequences antedates non- 

standard analysis by forty years,) 

The two recent theories that have been contrived precisely 

for dealing with streams and other infinite objects, like the 

ones mentioned in the beginning, are Scott's theory of domains 

for denotational semantics and Aczel's theory of nonwellfounded 

3 A. Robinson, Non-standard Analysis, North-Holland Pub- 
lishing Company, Amsterdam, 1966. 

4 C°  Schmieden and D. Laugwitz, Eine Erweiterung der In- 
finitesimalrechnung, Mathematische Zeitschrift, Vol. 69, 1958, 
pp. 1-39. See also the book by D. Laugwitz, InfinitesimalkalkG1, 
Eine elementare EinfHhrung in die Nichtstandard-Analysis, Biblio- 
graphisches Institut, Mannheim, 1978, and the further references 
given there. 

5 E. Bishop, Foundations of Constructive Analysis, McGraw- 
Hill Book Company, New York, 1967. 

6 L. E. J. Broawer, BegrHndung der Mengenlehre unabh~ngig 
vom logischen Satz vom ausgeschlossenen Dritten. Erster Tell: 
Allgemeiae Mengenlehre, Verhandelingen der Koninklijke Akademie 
van Wetenschappen te Amsterdam, Sect. I, Vol. 12, No. 5, 1918, 
PP. 3-43. 
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sets. 7 Of these, domain theory indeed succeeds in making sense of 

streams and similar infinite objects9 but it does not succeed in 

interpreting logic in a nontrivial way which harmonizes with the 

interpretation of sets as domains, elements of a set as points of 

a domain, functions from one set to another as approximable map- 

pings in Scott's sense, etc. Now, since all the set theoretical 

laws, as formalized in my type theory, 8 are validated in the do- 

main interpretation, the interpretation of logic might seem as 

simple as it could possibly be: just stick to the interpretation 

of propositions as sets, truth as nonemptiness, etc. But what 

happens? We indeed get an interpretation of logic satisfying all 

the usual laws of intuitionistic logic: the only trouble with it 

is that it trivializes in the sense that it makes every proposi- 

tion, even absurdity, come out true°  The reason is that every 

domain contains an element, namely, the bottom element. Hence, 

if propositions, like sets, are interpreted as domains and truth 

as nonemptiness, every proposition comes out true. 

The principal aim of domain theory is to make proper mathe- 

matical sense of the fixed point operator 

fix(f) : f(f(f(° ,.))). 

We have here yet another example of an infinite object to add 

to the long list in the beginning. Now, written in type theoret- 

7 D. Scott, Domains for denotational semantics, Lecture 
Notes in Computer Science, Vol. 140, Automata, Languages and 
Programming, Edited by M°  Nielsen and E. M. Schmidt, Springer- 
Verlag, Berlin, 1982, pp. 577-613, and P. Aczel, op. cit. 

8 p. Martin-LGf, Intuitionistic Type Theory, Bibliopolis, 
Napoli, 1984. 
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ical notation, the formal laws for the fixed point operator that 

domain theory seeks to satisfy, and succeeds in satisfying, are 

(x ~ A) (x e A) 

f(x) e A f(x) ~ A 

fix(f) E A fix(f) = f(fix(f)) e A 

They say that every approximable mapping from a domain into it- 

self has a fixed point. On the other hand, for an arbitrary 

set A, we can certainly derive 

l id(x) ~ A (x 6 A), 

id(x) = x ~A (x EA) 

by explicit definition in standard type theory. Hence, if the 

formal laws for the fixed point operator are adjoined to standard 

type theory, we can derive 

fix(id) E A 

for an arbitrary set A, also to be thought of as a proposition. 

In particular, 

fix(id) E N o = S.. 

Thus type theory becomes inconsistent when the formal laws for 

the fixed point operator are adjoined to it. 

We might try to avoid this inconsistency by only requiring 

a function from a nonempty set into itself to have a fixed point. 

The previous laws for the fixed point operator then get modi- 

fied into 
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aEA 

(x ~ A) (x ~ A) 

f(x) 6 A a E A f(x) E A 

fix(a,f) E A f i x ( a , f )  = f ( f i x ( a , f ) )  ~ A 

These laws, in turn, are readily seen to have the same effect as 

introducing an infinite natural number, governed by the axioms 

= s ( ~ )  ~ N.  

Indeed, given the modified fixed point operator, we can define 

infinity by putting 

= fix(O,s) ~ N, 

where s(x) E N (x E N) is the successor function, and, converse- 

ly, we can define the modified fixed point operator by performing 

an ordinary recursion up to infinity, 

fix(a,f) = rec(~,a,(x,y)f(y)) E A. 

That the second rule for the modified fixed point operator be- 

comes satisfied follows from the axiom oo = s(~) E N and the 

second recursion equation, 

f i x ( a , f )  = r e c ( ~ , a , ( x , y ) f ( y ) )  

= r e c ( s ( ~ ) , a , ( x , y ) f ( y ) )  

= f ( r e c ( ~ , a , ( x , y ) f ( y ) ) )  

= f(fix(a,f)) E A. 

This seems fine, but, although we no longer get the fixed point 

of the identity function as an element of the empty set alias 
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proof of falsehood, the system is still inconsistent, because 

N I ( N , x , s ( x ) )  t rue  (x E N) 

is readily proved by mathematical induction in standard type 

theory, from which 

N i(N,~,S(~)) true 

follows by instantiation once we allow ~ ~ N. On the other 

hand, 

I(N,~gs(~)) true 

follows of course from the definitional, or intensional, equal- 

ity ~ = s(~) E N. Thus we have reached a contradiction, which 

shows that the circular definition ~ = s(~) ~ N is inadmis- 

sible. 

Aczel's approach in his theory of nonwellfounded sets is to 

avoid contradiction in introducing nonwellfounded sets, like 

n= (((...??}, 
by relaxing the axioms of standard set theory, namely, by giving 

up the foundation axiom and replacing it by his antifoundation 

axiom, which is in contradiction with it. In the case of arith- 

metic rather than set theory, this would mean giving up the prin- 

ciple of mathematical induction. My own intuition has been that, 

on the contrary, all the laws for the standard, or wellfounded, 

objects should remain valid for the nonstandard, nonwellfounded, 

or infinitely proceeding, objects, which is to say that my 

thoughts have gone rather in the direction of nonstandard arith- 
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metic and analysis. Also, the idea of getting the fixed point 

operator, and thereby all sorts of infinite objects, from the 

single infinite natural number 

=,o = s(s(s(...))) 

is very reminiscent of the fundamental property of a nonstandard 

model of arithmetic that it contain a natural number which is 

greater than 

o, s(o), s(s(o)), ..., 

that is, which is greater than all standard natural numbers. 

How are we then to make proper mathematical sense of the 

infinite? To get out of the dead end that we have reached, we 

must turn to the theory of choice sequences. A choice sequence 

O( = fo(f](f2(...))) 

is determined by a noncircular but nonwel!founded definitional 

process 

~I = fI(~2 )' 

~2 = f2(~3 ), 

Here fi is a function from Ai+ I to A i, where A i is a nonempty set, 

that is, a set containing an element a i, for i = 0, I, 2, etc. 

In particular, A 0 is the set to which the choice sequence O( 

= ~0 belongs. The intuition is the following. At the zeroth 

stage, we know nothing about ~0 except that it belongs to the 
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set A O. Thus ~0 is simply a variable ranging over A O. Then, 

when we ask what element of A 0 that ~0 is, we get to know that 

0 = fo(° (1 )' where ~I belongs to A 1. At this first stage, ~i 

is freely variable, whereas ~0 has become partially determined: 

it is neither freely variable nor constant but something midway 

in between. At the second stage, we ask what element of A I that 

0( I is, and get to know that ~I = fI(° (2 )' where o( 2 is an ele- 

ment of A 2. The information about o( thereby gets refined from 

fo(O(1) to fo(f1(~2)). In this way, the definitional process 

continues without end. The reason why the nonwellfoundedness of 

the definition will not lead to any inconsistency is that, at any 

finite stage, we can break it off by putting ~i = ai' where a i 

is the element which shows the set A i to be nonempty. The choice 

sequence ~ then gets approximated by fo(f1(...fi_1(ai)...)), 

which is a standard element of A O. This notion of choice sequence 

is essentially due to Troelstra. 9 The only difference is that he 

has been concerned with the case when the functions, from which 

the choice sequence is obtained by infinite composition, are 

continuous functions on the Baire space. 

Now, think of 

= s(s(s(...))) 

as a choice sequence, that is, as defined by the nonwellfounded 

definitional process 

9 A. S. Troelstra, Choice Sequences, A Chapter of Intuition- 
istic Mathematics, Clarendon Press, Oxford, 1977. See partic- 
ularly Appendix C, pp. 152-160, and the references to earlier 
works given there. 
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= n 0 = s(~ 1 ), 

° ° I : s(~2)' 

~2 : s(~3)' 
• ~ 6 

We are then lead to extend standard type theory by adjoining 

the axioms 

{ ~i ~ N, 

~i = s(~i+1) ~ N 

for i = 0, I, etc., and to define ~ E N by the explicit defini- 

tion ~ = ~0 g N. It was only the accidental fact that the par- 

ticular choice sequence ~ = s(s(s(...))) proceeds in the same 

way all the time that seduced us into making the circular defini- 

tion ~ = s(~) ~ N, which we have seen to be inconsistent. 

make the explicit definition 

fixi(a,f) = rsc(~i,a~(x,Y)f(Y)) E A, 

where a E A and f(x) E A (x E A). Then fixi(a,f) obeys the rules 

(x ~ A) (x ~ A) 

a E A f(x) ~ A a E A f(x) E A 

fixi(a,f) ~ A fixi(a,f) = f(fixi+1(a,f)) E A 

Conversely, given fixi(a,f) as governed by these two rules, we 

can define ~i ~ N by putting 

~i = fixi(0's) ~ N 

and thereby satisfy the axioms for ~i' i = 0, I, etc. Thus the 
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rules for fixi(a,f) and the axioms for ~i are formally equi- 

valent. It is natural to refer to fixi(a,f) as the indexed fixed 

point operator. 

It is important that ~i g N, i = O, 1, etc., is an external 

sequence of nonstandard natural numbers satisfying ~i = s(c'° i+1) 

N, i = 0, I, etc., because the axioms for a corresponding in- 

ternal sequence, that is, 

(x)  = s ( ~ ( s ( x ) ) )  e N (x ~ N), 

lead of course to a contradiction, since they entail 

(Vx E N)(~(s(x)) <~(x)) true, 

which is in contradiction with the principle of mathematical 

induction. 

Observe that the presence of ~ ~ N allows us to get a 

closed notation for the limit of an internal sequence of mathe- 

matical objects of whatever kind. For instance, if A(x) is a set 

for x G N, then 

lim A(x) = A(~) 
X= 

is a set. Likewise, and most importantly, if a(x) ~ A(x) for 

x E N, then 

lim a(x) = a(~) ~ A(~). 
X=~ 

Thus the limit operation lim is expressed simply as the literal 
X= 

substitution of the infinity symbol ~ for the variable x which 

tends to infinity. Since substitution is defined so as to com- 
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mute with every other operation, this means that the limit oper- 

ation also automatically does so. For instance, if a(x) E Q and 

b(x) ~ Q for x ~ N, where Q is the set of rational numbers, then 

lim (a(x) + b(x)) = a(~) + b(~) 

= lim a(x) + lim b(x) E Q 

holds by definition. This example shows two virtues of the non- 

standard approach to analysis, namely, that limits always exist 

and can be expressed simply by substituting the infinity symbol 

for the variable which tends to infinity. 

Let the predecessor and cut off subtraction functions be 

defined as usual by the recursion equations 

I p d ( O )  = 0 E N, 

p d ( s ( a ) )  = a E N, 

I~ - 0 = a E N, 

-- s ( b )  = p d ( a  - b )  E N, 

that is, in type theoretical notation, 

p d ( a )  = r e c ( a , O , ( x , y ) x )  E N, 

a -- b : rec(b,a,(x,y)pd(y)) E N. 

Then, from the axiom 

we get inversely 

i = s(~i+1 ) E N, 

~i+I = Pd(~i) ~ N. 
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Iterated use of the latter equation yields 

~i = Pd(~i-1) ..... pdi(~) = ~-- si(O) E N 

for i = 0, 1, etc. Thus it is enough to introduce the single 

infinite number ~EN and require it to satisfy the definitional 

equalities 

- si(o) = pdi(~) = s(pdi÷1(~)) = s(~- si÷1(0)) e N. 

The latter equalities, in ~urn, are equivalent to 

= si(pdi(~)) = si(~ - si(O)) m N 

for i = O, I, etc. So, although we can manage with a single new 

constant, we still need infinitely many axioms to characterize 

it. 

From the axioms ~i = s(~i+1) E N for i = O, I, etc., it 

is readily proved that each ~. is an infinite natural number 

in the sense of nonstandard arithmetic, which is to say that it 

exceeds all standard natural numbers. Indeed, we have 

0 ~ x true (x E N), 

and hence, by instantiation, 

0 ~ .  . true 
i+3 

for arbitrary i and j = 0, I, etc. But the successor function is 

monotonic, so that we can conclude 

sJ(o) ~sJ(~i+ j) true. 

On the other hand, from the axioms ~i = s(~i+1) E N, there 
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follow the definitional equalities 

. = S j ~ (c~i+ j ) E N. 

Therefore we have 

sJ(o)~o0 i true 

for all j = O, I, etc., which shows that each ~i is infinite 

in the sense of nonstandard arithmetic. 

Nonstandard extension of type t heor F. 

Let there be given, in the system T of standard type theory, 

a projective system of nonempty sets 

A 0 ( A 1 < .... ... ( A i ~ Ai+ I < ..., 
f0 fl fi-1 fi fi+1 

or, in the formal notation, 

I A i set, 

fi(xi~1) E A i 

a i ~ A i , 

(xi+ I E Ai+ 1), 

where i = O, I, etc. The case that we shall be especially inter- 

ested in is when 

I A i = N, fi(xi+1) = s(xi+ I) E N (xi+ I 

~a i = 0 EN, 

~N), 

corresponding to the picture 

N( N< ...< N~ N( 
S S S 8 8 
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In the most general case, each A i need not be just a single set 

but a whole context 

Xil E Ail, ...9 Xin i E Aini(Xil .... ,Xini_1), 

which is to say that 

Then 

Ail set, 

Aini(Xil,...,Xini_1) set (Xil E All, ..., 

Xini_ I ~ Aini_1(Xil,..-,Xini_2))- 

= x i ,Xin i xi I'''" 

is to be interpreted as a sequence of variables, namely, as the 

sequence of variables occurring in that context, 

) fini I .... , .... ~xi+11, .... xi+ini÷ I fi(xi+1) = fi1(xi÷11 'xi+Ini+1 

as a sequence of functions of several variables mapping the con- 

text at stage i+I into the context at stage i, which means that 

fi1(xi+11, .... xi+ini÷1 ) E Ail, 

fini(Xi+11, .... xi+Ini+ I ) E Aini(fi1(xi+11,.o.,xi+ini+1),..~, 

fini_1(xi+11, .... xi+ini+1))~ 

in all cases for xi+11 E Ai÷11, ..., xi+Ini+ I 

.... xi+ini+1_1), and 

Ai+Ini+1(xi+11 ~ 
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= ail ,aini a i ,... 

as a sequence of elements 

ail E Ail, 

o 

ain i E Ain i(a il,...'aini_1 ) 

that is, as an instance of the context at stage i = O, I, etc. 

With this amount of vector notation, the general case can be re- 

duced notationally to the special case that I started by consid- 

ering, and shall continue to consider in the following. It is 

natural to speak with Troelstra of the general case as that of a 

network of interdependent choice sequences instead of just a 

I0 single one. 

Now, extend the system T of standard type theory by adjoin- 

ing the axioms for a single choice sequence ~ = f0(fl(f2(..° ))), 

that is, 

I ~i E A i, 

i = fi (~ i+I ) E A i 

for i = 0, 1, etc., and call the extension T~. The new axioms 

may be interpreted as saying that the projective limit of the 

given projective system of nonempty sets is itself nonempty. 

This is a counterpart of the so called countable saturation prin- 

ciple of nonstandard analysis, which makes it natural to refer 

10 A. S. Troelstra, op. cit., p. 154. 
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to T~ not only as the nonstandard extension but also as the 

11 saturation of T. 

How is provability in the nonstandard extension T~ related 

to provability in the standard theory T? This question is an- 

swered by the following lemma. 

Lemma (proof theoretic). A judgement is provable in T~ if 

and only if, at some stage j = O, I, etc., the judgement which 

is obtained from it by replacing each occurrence of O~ i by 

fi(fi+1(...fj_1(xj)...)) is provable in T from the assumption 

xj E Aj. 

The stage j up to which you need to go must of course be 

at least as great as the maximum of the indices of the constants 

~i that occur in the judgement in question. It may even have to 

be strictly greater. 

To prove the necessity of the condition, observe first that, 

because of the finiteness of a proof, a judgement is provable 

in T~ if and only if it is provable in Tj at some stage j = O, I, 

etc., where Tj is the finite extension of T obtained by adjoining 

the 2j+I axioms 

~j e A j, 

{ o~j_ I E Aj_ I , 

O(j_ I : fj_1(~j) E Aj_ I, 

11 S°  Albeverio, J. E. Fenstad, R. Hoegh-Krohn, and T. Lind- 
strum, Nonstandard Methods in Stochastic Analysis and Mathemat- 
ical Physics, Academic Press, New York, 1986, p. 46. 
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{ ~0 g AO' 

~ 0  = f O ( ~ l  ) ~ AO' 

But for the crucial first of these axioms, this is nothing but 

a sequence of explicit definitions, successively defining ~j-1' 

Cgj_2, etc., ultimately 6 0 in terms of ~j. Indeed, we have 

~i = fi(fi+1('''fj-1(~j )'.')) E Aj 

for 0 ~ i < j. Thus Tj is a definitional extension of the theory 

which is obtained from T by adjoining the single axiom 

~j e A jo 

This being the only axiom which governs the constant ~j, we may 

as well replace it by a variable xj, thereby transforming the 

axiom ~j ~ Aj into the assumption xj E Aj. This proves the ne- 

cessity of the condition. 

The sufficiency of the condition is clear, because Tj is an 

extension of T, and, in Tj, we have access to the axiom 

~j e Aj 

as well as the definitional equalities 

~i = fi(fi+1('''fj-1 (~j)° '')) E A i 

for 0 ~ i < j, in addition to the axioms of T, so that we can 

first substitute ~j for xj and then replace fi(fi+1(... 

fj_1(~j).° .)) by cg i. Moreover, since T~ is an extension of 

Tj, provability in Tj entails provability in T~. 

Observe that the only rules of T, and hence of Tj and T~ , 
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that we have used in the course of the proof are the substitution 

and equality rules. It is thus immaterial exactly what the proper 

axioms of T are. 

By means of the lemma, the following proof theoretic version 

of the transfer principle is easily established. 

Transfer principle (proof theoretic). Let A be a proposition 

expressed in the language of T. Then A can be proved to be true 

in T~ if and only if A can be proved to be true in T already. 

The sufficiency of the condition is clear since T~ is an 

extension of T. To prove the necessity, assume that 

A true 

is provable in T~, that is, that 

aEA 

is provable in T~ for some a. The proof expression a is of course 

in general nonstandard, but, by the lemma, 

a = b ( ~ j )  ~ A, 

where 

b(xj) ~ A (xj E Aj) 

is provable in T already. Also, by assumption, 

aj E Aj 

is provable in T. Hence, by substitution, so is 

b(aj) E A. 
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Suppressing the proof expression, we can conclude that 

A true 

is provable in T already. 

The transfer principle is a consequence of the possibility 

of approximating a nonstandard proof by a standard one. Applying 

it to the proposition ~= N O , which is certainly expressed in 

the language of T, we can conclude that T~ is consistent rela- 

tive to T. This relative consistency proof is of a very elemen- 

tary nature. But, to conclude that T~ is consistent outright, 

we need to combine it with the semantic consistency proof for 

12 the standard theory T. 

Inductive limit i nterpretatio ~ 

The preceding proof theoretic treatment of the nonstandard 

extension has an exact model theoretic counterpart. Let M be the 

standard model of the formal system T of standard type theory. 

When specifying the model ~, as compared with when you specify 

the theory T, there is no difference in the symbols that you put 

down: the difference is only one of attitude, or point of view. 

When specifying M, every expression is to have its usual meaning, 

or intended interpretation, whereas, when specifying T, it is to 

be interpreted purely formalistically, that is, as standing for 

itself and not for its meaning. For example, among the objects 

in the standard model, there is the set N of natural numbers and 

the particular natural number O, whereas, in the theory, there 

12 P. Martin-L~f, op. cit., pp. 69-70. 
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is the set expression N and the numerical expression 0. The dif- 

ference in attitude is brought about by speaking of objects of 

the various semantical categories in the one case, and expres- 

sions of the corresponding syntactical categories in the other 

case. 

The nonstandard model is built over the same projective 

system of nonempty sets~ or, more generally, contexts, as the 

nonstandard theory, namely, 

A 0 ( AI ~ ..°  ~ A i C Ai+ I ~ .~. 
f0 fl fi-] fi fi+] 

The only difference is that, this time, the sequence of sets, 

mappings between them, and elements contained in them, 

i rA i set, • 

fi(xi+1) ~ A i (xi+ I E Ai+ I), 

a i ~ A i 

for i = 0, I, etc., are thought of as objects rather than ex- 

pressions in the language of T. 

Using category theoretic terminology and notation, let M i 

be the comma model M over Ai, in symbols, 

M i = M/A i .  

A type in the sense of M i is a family of types over Ai, that is, 

a type which has been made dependent on a variable which varies 

over Ai, and an object of the type in the sense of M i is a func- 

tion defined on A i whose value for a certain argument is an ob- 

ject of the type in the family corresponding to that argument. 
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For example, a set in the sense of M i is a family of sets over 

Ai, say 

A(x i) set (x i E A i), 

and an element of that set in the sense of M i is a function 

a(x i) E A(x i) (x i e Ai). 

•i is clearly a nonstandard model of T, and it becomes a model 

of T i by interpreting the constant 

o(.6A 
1 1 

simply as 

x i E A i (x i ~ A i), 

that is, as the identity function on A i, 

When passing from A i to M/A i, the given projective system 

of sets is transformed into the injective system of models 

~/A° ~ f o  M/A] ~ ] ~  . . .  f~ ~M/A i ~ ~ / A i +  ] f .  ~ . . .  
i-I z i+I 

Here f~ i denotes composition with fi" Thus f~ i takes an object in 

the sense of M i, that is, a function defined on the set A i, and 

composes it with fi' which yields a function on Ai+1, that is, 

an object in the sense of Mi+ I. For instance, if 

A(x i) set (x i E A i) 

is a set in the sense of M i, then 

f~(A)(xi+ I) = A(fi(xi+1)) (xi+ I E Ai+1), 
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which is a set in the sense of Mi+1, and, if 

a(x i) E A(x i) (x i E A i) 

is an element of that set in the sense of M i, then 

f~(a)(xi+ 1) = a(fi(xi+1)) E A(fi(xi+l)) (xi+ I ~ Ai+1), 

which is an element of the set f~(A) in the sense of Mi+ I . The 

action of f~ i on other types of objects is similar. Viewed proof 

theoretically, fm i is the translation from the theory T i to the 

theory Ti+ I given by the eqaation 

~. = fi ( ~ ) E A i l i+I ' 

Thus fi translates every symbol of T i into the same symbol of 

Ti+1, except ~i which is translated into fi(o(i+1). Now, since 

substitution, and thereby composition, has the characteristic 

property of commuting with every operation, like T]-, ~ , app, 

etc f~ "' i is a homomorphism from M i to Mi+ I. This is what we 

should expect, since, what appears proof theoretically as a trans- 

lation between theories, corresponds model theoretically to a 

homomorphism between models°  Summing up, we have indeed to do 

with an inductive system of algebraic structures, in our case, 

models of type theory, which is a very rich kind of algebraic 

structure as compared with groups, rings, modules, or the like. 

Let 

M~ = lim M i = lim M/A i 
--~ 

be its inductive, or direct, limit. 

According to the definition of an inductive limit, a set 
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in the sense of M~ is a set in the sense of M i, that is, a fam- 

ily of sets 

A(X i) (x i E Ai), 

for some i, and it is defined to be equal to another such set, 

say 

B(xj) (xj E Aj), 

whose index j may differ from i, provided 

A(fik(Xk)) = B(fjk(Xk)) (x k E A k) 

for some k ~ max(i,j), where i have put 

fik(Xk) = fi(fi+1(~..fk_1(Xk)...)) E A i (x k E A k) 

for the sake of brevity. Likewise, an element of the set A(x i) 

(x i E A i) in the sense of M~ is a function 

a(xj) ~ A(fij(xj)) (xj E Aj) 

for some j ~ i, and it is defined to be equal to another such 

element, say 

b(x k) ~ A(fik(Xk)) (x k ~ Ak), 

whose index k>__i may differ from j, provided 

a(fjl(Xl)) = b(fkl(Xl)) E A(fil(Xi)) (x I E A I) 

at some stage 1 ~ max(j,k) >~ i. Other types of objects in the 

sense of M~ are defined similarly. To take yet another example, 

which we shall need in the following, a family of sets over the 
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set A(x i) (x i E A i) in the sense of M~ is a family of sets of 

two arguments 

B(xj,x) (xj ~ Aj, x ~ A(fij(xj))) 

for some j ~ i, and it is defined to be equal to another such 

family, say 

C(Xk,X) (x k E A k, x e A(fik(Xk))), 

whose index k ~i may differ from j, provided 

B(fjl(X l),x) = C(fkl(X l),x) (x I e A I, x e A(fil(X 1))) 

for some i ~ max(j,k) ~ i. 

So far, I have only explained how the various types are in- 

terpreted in M~. I proceed to verify that M R is a model of T~. 

First of all, M~ becomes a nonstandard model of the standard 

theory T by letting every operation of T act pointwise, like 

in Mi, with the only extra complication that, since the operands 

begin to exist at different stages, in general, they have to be 

shifted out to a common later stage before the operation can be 

applied. For example, if 

a(x i) ~ N (x i ~ A i) 

and 

b(xj) e N (xj eAj) 

are two nonstandard natural numbers, that is, natural numbers 

in the sense of M~, then their sum is 

(a + b)(x k) = a(fik(Xk)) + b(fjk(Xk)) e N (x k e A k) 
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with k = max(i,j). The action of the other operations of the 

standard theory T on the objects of M~ is similar. It only re- 

mains to verify that the axioms that are proper to T~, namely, 

the axioms 

I ~i E A i, 

~i = fi(~i+1 ) E A i 

that govern the choice sequence ~, become satisfied in M~. 

The interpretation of the constant ~i is the identity function 

x i E A i (x i E Ai). 

Hence, in order to satisfy the definitional equality 

~i = fi (~ 

we must see to it that 

i+I ) ~ Ai' 

fij(xj) = fi(fi+lj(Xj)) E A i (xj ~ Aj) 

for some j ~ max(i,i+S) = i+I. Clearly, it suffices to take 

j = i+I. Thus M~ is indeed a model of T~. And it is not an 

arbitrarily contrived model: it is, to be sure, a nonstandard 

model of the standard theory, but it is the standard model, or 

intended interpretation, of the nonstandard theory. 

Every standard object gives rise to a nonstandard object, 

namely, the function on A 0 which is constantly equal to the 

standard object in question. This is the analogue of the star 

embedding of classical nonstandard analysis. 13 For example, 

13 A. Robinson, op. cit., pp. 36-37. 
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a standard set A gives rise to the nonstandard set 

A(x o) = A (x o EA0), 

a standard element a of A to the nonstandard element of A(x 0) 

(x 0 E A 0) defined by the equation 

a(x 0) = a E A = A(x 0) (x 0 e A0), 

and so on for other types of objects. This is an embedding of the 

standard model M into the nonstandard model M~ o To prove that 

it is injective, as an embedding should be, let A and B be two 

standard sets, and assume that their embeddings 

A(x o) = A (x oE A o) 

and 

B(x o) = B (x o eA o) 

are equal in the sense of M~, that is, that 

A(foi(Xi)) = B(foi(Xi)) (x i E A i) 

at some stage i ~ O. Then, by invoking the element a i which shows 

the set A i to be nonempty, we can conclude, by substitution, that 

A(foi(ai)) = B(foi(ai)). 

On the other hand, again by substitution, 

A(foi(ai)) = A 

and 

B(foi(ai)) = B, 
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so that, by symmetry and transitivity, 

A=B. 

The proof of the injectiveness of the star embedding of other 

types of objects is similar. Observe also the similarity with 

the proof of the model theoretic transfer principle given below. 

The star embedding was the last arrow to be explained in the 

commutative diagram 

intended 
interpretation 

subtheory 
embedding 

T-- >T 

interpretation 

M ~ ~ M~ = !ira M/A i, 
star 

embedding 

which summarizes the structure that we have erected. 

Because of the identification of propositions and sets, 

a proposition in the sense of M~, or a nonstandard proposition, 

is a propositional function on some A i, 

A(x i) prop (x i ~ Ai). 

By definition, such a nonstandard proposition is nonstandardly 

true if it has a nonstandard proof, that is, if there exists an 

a(xj) E A(fij(xj)) (xj ~ Aj) 

at some stage j ~ i. Because of the definition of the standard 

notion of truth, according to which truth is tantamount to the 



177 

existence of a proof, this is clearly equivalent to requiring 

A(fij(xj)) true (xj E Aj), 

or, if you prefer, 

(Vxj c Aj)A(fij(xj)) true, 

at some stage j ~ i. Once the notion of nonstandard truth has 

been duly introduced, it is easy enough to establish the follow- 

ing model theoretic version of the transfer principle. 

Transfer principle (model theoretic). Let A be a standard 

proposition. Then the embedding of A into the nonstandard model 

is nonstandardly true if and only if A is true in the standard 

sense. 

To prove the sufficiency of the condition, let 

A(x O) : A (x 0 E A O) 

be the embedding of the standard proposition A into the non- 

standard model, and suppose 

true 

in the standard sense. Then~ by weakening, 

A true (x 0 E AO), 

and, by the principle that zruth is preserved under definitional 

equality, 

A(x O) true (x 0 ~ AO). 

But 
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f00(x0) = x 0 E A 0 (x 0 E A0), 

so that, again by the same principle, 

A(f0i(xi)) true (x i 6 A i) 

already at stage i = 0, which shows that A(x 0) (x 0 E A 0) is non- 

standardly true. 

Conversely, assume that A(x 0) (x 0 E A 0) is nonstandardly 

true, that is, that 

A(f0i(xi)) true (x i E A i) 

at some stage i ~0. Then, since we have a i E A i at every stage i, 

we get 

A(f0i(ai)) true 

by substitution. On the other hand, by substituting f0i(ai) for 

x 0 in the definition of A(x0), we get 

A(f0i(ai)) = A. 

Hence, by preservation of truth under definitional equality, 

we can conclude 

as desired. 

A true 

If you compare this proof with the earlier proof of the 

proof theoretic version of the transfer principle, you will see 

that it is its exact model theoretic counterpart. 
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Commutation of nonstandard truth 

and the logical operations 

Classical nonstandard analysis is built on the highly non- 

constructive existence of an ultrafilter extending the Fr@chet 

filter of all cofinal subsets of the set of natural numbers°  One 

may wonder how we have been able to circumvent this in the pre- 

ceding construction of the inductive limit model of nonstandard 

type theory, which roughly amounts to working with the Fr@chet 

filter itself instead of an ultrafilter extending it. The answer 

seems to be that, however nonconstructive and nonstandard is 

classical nonstandard analysis, its interpretation of the logical 

operations is nevertheless standard, whereas, in nonstandard type 

theory, the logical operations receive a nonstandard interpreta- 

tion, as they normally do in intuitionistic model theory, for 

instance, in Kripke semantics. And it is easier to construct a 

nonstandard model if it is allowed to be nonstandard throughout 

than if it is to be nonstandard in its interpretation of the 

notion of natural number and at the same time standard in its 

interpretation of the logical operations. Now, that a nonstandard 

model is standard in respect of the logical operations is tanta- 

mount to saying that nonstandard truth commutes with the logical 

operations. It is thus desirable to investigate to what extent, 

in our inductive limit interpretation, nonstandard truth com- 

mutes with the logical operations, which is to say, loosely 

speaking, exactly how nonstandard is its interpretation of the 

propositional connectives and the quantifiers. The result is 

the following. 
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Theorem. Of all the logical operations, nonstandard truth 

commutes with ]_, &, and 3, but not with V, O, and V, in 

general. 

By saying that nonstandard truth commutes with _[, I mean 

of course that it is absurd that J_ is nonstandardly true, that 

is, that J- is nonstandardly false. But _L is a standard proposi- 

tion. Hence it follows directly from the model theoretic transfer 

principle that .[.is nonstandardly true if and only if J. is true, 

which is manifestly not the case. Thus i is indeed nonstandardly 

false. 

The simplest way to prove that nonstandard truth commutes 

with conjunction is to note that, since the rule of conjunction 

introduction, 

A true B true 

A & B true 

and the two rules of conjunction elimination s 

A & B true A & B true 

A true B true 

are formally derivable in standard type theory, and the inductive 

limit interpretation is a nonstandard model of it, they must be 

validated by that interpretation. Hence A & B is nonstandardly 

true if and only if A is nonstandardly true and B is nonstandard- 

ly true. But it can also be checked directly as follows. Let 

A(x i) (x i ~ A i) 

and 
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B(xj) (Xj ~ Aj) 

be two nonstandard propositions. Then their nonstandard conjunc- 

tion is 

A(fik(Xk)) & B(fjk(Xk)) (x k E Ak), 

where k = max(i,j). Suppose that the two nonstandard conjuncts 

are nonstandardly true, that is~ by the definition of nonstandard 

truth, that 

A(fil(X I ) true (x ! E A I) 

and 

B(fjm(X m ) true ( x  m E A m ) 

at some stages I ~i and m ~ j, respectively. Let n = max(l,m) 

be a common later stage. Then, by substitution, 

A(fil(fln(X n ) true (x n E A n ) 

and 

B(fjm(fmn(Xn j~ ) true (x n ~ An). 

On the other hand, 

fil(f!n(Xn)) = f~_(x )± n m = fik(fkn(Xn )) E A i ~fXn E A n ) 

and 

fjm(fmn(Xn)) = fjn(Xn) = fjk(fkn(Xn)) EAj (x n EAn). 

Hence, by preservation of truth under definitional equality and 
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conjunction introduction, 

A(fik(fkn(Xn))) & B(fjk(fkn(Xn))) true (x n E A n ) 

for n = max(1,m) ~max(i,j) = k, which is to say that the non- 

standard conjunction of the two nonstandard propositions is non- 

standardly true. Conversely, assume that this is the case, that 

is, by the definition of nonstandard truth, that 

A(fik(fkl(Xl))) & B(fjk(fkl(Xl))) true (x I E A l) 

at some stage I ~k = max(i,j). Then, by conjunction elimination 

and preservation of truth under definitional equality, 

with 1 ~i, and 

A(fil(Xl)) true (x I E A l) 

B(fjl(Xl)) true (x I E A l) 

with 1 ~j, which shows that the two nonstandard conjuncts are 

both nonstandardly true. 

To complete the proof of the positive part of the theorem, 

we must convince o~rselves that nonstandard truth also commutes 

with existence. The simple way to do it is to note that the usual 

rule of existence introduction, 

a E A B(a) true 

( 3 x  E A)B(x) t rue '  

as well as the strong rules of existence elimination, 

c ~ ( ~ x  ~ A ) s ( x )  o E ( 3 x  ~ A)S (x )  

p(c) E A B(p(c)) true 
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are all derivable in standard type theory, so that they must be 

validated by the nonstandard model. Hence, if B(a) is nonstand- 

ardly true for a nonstandard element a of the nonstandard set A, 

then the nonstandard existential proposition (Sx E A)B(x) is 

nonstandardly true. Conversely~ assume that (3 x E A)B(x) is non- 

standardly true. By the definition of nonstandard truth, this 

means that it has a nonstandard proof c. Then the left projection 

p(c) of that proof in the sense of the nonstandard model is a 

nonstandard element of the nonstandard set A such that the non- 

standard proposition B(p(c)) is nonstandardly true. Thus non- 

standard truth commutes with existence. The more laborious direct 

verification proceeds as follows. Let 

A(xil (x iE A i) 

be a nonstandard set, and let 

B(xj,x) (xj E Aj, x ~ A(fij(xj))) 

with j $ i be a nonstandard propositional function over it. Quan- 

tifying it existentially in the sense of the nonstandard model, 

we get the nonstandard proposition 

(~x E A(fij(xj)))B(xj,x) (xj E Aj). 

Let 

a(x k) E A(fik(Xk)) (x k E A k) 

with k ~i be a nonstandard element of the nonstandard set A. 

Then B(a) in the sense of the nonstandard model is the nonstand- 

ard proposition 
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B(fjl(Xl),a(fkl(Xl))) (x I E AI), 

where 1 = max(j,k). Assume it to be true, that is, assume 

B(fjm(Xm),a(fkm(Xm))) true (x m E A m ) 

at some stage m ~ 1. Then, by standard existence introduction, 

(Sx E A(fim(Xm)))B(fjm(Xm),X) true (xm~ 

for m ~l = max(j,k)~ j, which shows that the nonstandard exis- 

tential proposition is nonstandardly true°  Conversely, assume 

that the nonstandard existential proposition is nonstandardly 

true, that is, according to the definition of the notion of non- 

standard truth, that it has a nonstandard proof 

c(x k) E (~x E A(fik(Xk)))B(fjk(Xk),X) (x k E A k) 

with k~j ~i. By the strong rules of existence elimination, 

we can conclude from this that 

and 

P(C(Xk)) E A(fik(Xk)) (x k ~ A k) 

B(fjk(Xk),P(C(Xk))) true (x k E Ak). 

Thus we have found a nonstandard element of the nonstandard set 

A(xi) (x i ~ Ai) which satisfies the nonstandard propositional 

function B(xj,x) (xj ~ Aj, x ~ A(fij(xj)))o This finishes the 

proof of the positive part of the theorem, 

To prove the negative part of the theorem, I shall make use 

of the projective system 
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A 0 < ]IIA 0 ( 
id 

... ~ AO 4~---- A 0 
id id id id 

where A 0 is a fixed nonempty set, that is, a set containing an 

element a 0 E A O. Let 

? = ?o = id(?1)' 

?1 = id(?2), 

?2 = id(?3)' 

be the choice sequence that it defines. Furthermore, let A(x O) 

and B(x O) be two standard propositional functions of the vari- 

able x 0 E A O. Then the nonstandard proposition A(?) is nonstand- 

ardly true provided A(x O) is true for x 0 ~ A O, or, equivalently, 

(Vx 0 ~ AO)A(x O) is true, in the standard sense. Likewise, B(?) 

is nonstandardly true provided (Vx 0 E Ao)B(x O) is true in the 

standard sense. Now, consider the nonstandard disjunctive propo- 

sition A(?) V B(?). It is nonstandardly true provided (Vx 0 E A O) 

(A(Xo) V B(Xo)) is true in the standard sense. Hence, since the 

implication in the judgement 

(Vx 0 E A0)A(x 0) V (~x  0 ~ Ao)B(x 0) 
2:) (Vx 0 ~ A0)(A(x 0) V B(x0)) true 

cannot be reversed, in general, nonstandard truth does not com- 

mute with disjunction. Another example of the failure of non- 

standard truth to commute with disjunction will be given later. 

Next, consider the nonstandard implicative proposition 

A(?) ~ B(?). It is nonstandardly true provided (Vx 0 ~ Ao)(A(x O) 

B(xo)) is true in the standard sense. But the outermost im- 
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plication in the judgement 

( ~ x  o ~ A0)(A(x o) ~ B(x0)) 
( ( ~ x  0 E A0)A(x O) ~ (Vx  0 ~ A0)B(Xo)) t rue  

cannot be reversed ,  in  gene ra l .  Hence, i f  A(?) ~ B ( ? )  i s  non- 

standardly true, the nonstandard truth of A(?) entails the non- 

standard truth of B(?), but not conversely, which shows that 

nonstandard truth fails to commute with implication. 

Finally, let A(x 0) be a set depending on the variable 

x 0 E Ao, that is, a family of sets over AO, and B(Xo,X) a pro- 

positional function of the two variables x 0 E A 0 and x E A(x0), 

both in the standard sense, and consider the nonstandard propo- 

sition (~x E A(?))B(?,x). By the definition of nonstandard 

truth, it is nonstandardly true provided (Vx 0 ~ Ao)(~x E A(Xo)) 

B(x0,x) is true in the standard sense. On the other hand, an ar- 

bitrary nonstandard element of A(?) is of the form a(?), where 

a(x 0) ~ A(x O) for x 0 E A 0 is a standard function, and B(?,a(?)) 

true provided (Vx 0 E Ao)B(x0,a(x0)) is true is nonst andardly 

in the standard sense. Hence the nonstandard truth of (Vx g A(?)) 

B(?,x) entails the nonstandard truth of B(?,a(?)) for all non- 

standard elements a(?) of A(?), but not conversely, since the 

implication in the judgement 

(Vx o ~ Ao)(Vx ~ A(xol)~(Xo,X) 
( ~ z  E (]~x 0 ~ A0)A(x0)) (~x  0 E A0)B(x0,app(z,x0)) t rue  

cannot be reversed, in general. Thus nonstandard truth fails to 

commute with universal quantification, and the proof of the theo- 

rem is finished. 



I87 

Miscellaneous examples 

This is not the place to begin a systematic development of 

intuitionistic nonstandard analysis, but a few examples may help 

to give an idea of what can be done with the nonstandard con- 

cepts. 

Example I. Make the pair of definitions 

I Even(a) = (7~y E N)I(N,a,2.y), 

Odd(a) = (3y ~ N)I(N,a,2.y + ]), 

where a E N. Then the judgement 

Even(x) V Odd(x) true (x E N) 

is easily proved by induction on x in standard type theory. 

Hence, substituting ~ for x, we can derive 

Even(w) V Odd(~) true 

in the nonstandard extension°  Semantically, this means that the 

nonstandard proposition Even(~) V 0dd(~) is nonstandardly true. 

On the other hand, at no stage i = 0, I, etc., do we have 

Even(si(x)) true (x ~ N), 

nor do we have 

0dd(si(x)) true (x E N), 

which is to say that the two nonstandard propositions Even(m) 

and Odd(~) are both nonstandardly false. We have here another, 

more memorable example of the failure of nonstandard truth to 

commute with disjunction. In classical nonstandard analysis, 
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one of the two nonstandard propositions Even(~) and 0dd(~) is 

forced to be true, which one of them depends on the choice of the 

ultrafilter extending the Fr~chet filter of cofinal subsets of 

the set of natural numbers. Since this choice is anyway left 

arbitrary, it seems more natural not to force any one of Even(~) 

and 0dd(~) to be true. This is made possible by the nonstandard 

interpretation of disjunction in the present, intuitionistic 

version of nonstandard analysis. 

Example 2. Let A(x) (x ~ N) be a standard property of natu- 

ral numbers. Then A(~) is a nonstandard proposition, whose non- 

standard truth entails the nonstandard truth of A(a) for all in- 

finite a ~ N. 

To see this, assume 

A ( ~ )  true. 

By the definition of nonstandard truth, this means that 

A(si(x)) true (x ~ N) 

at some stage i = 0, I, etc. If we define addition of natural 

numbers by recursion on the first argument, 

I~ +b =b~N, 

(a) + b = s(a + b) ~ N, 

we h a v e  

si(x) = si(o) + x ~ N (x ~N), 

s o  t h a t  we c a n  p a s s  t o  

A(si(O) + x) true (x E N) 
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by preservation of truth under definitional equality. From this, 

we get 

I(N,si(0) + x,y) D A(y) true (y E N) 

by 1-elimination and D-introduction. Standard rules of intui- 

tionistic predicate logic now yield 

(~y ~ N)((3x ~ N)I(N,si(0) + x,y) D A(y)) true. 

But 

(Vy ~ N)((3x ~ N)I(N,si(0) + x,y) D A(y)) 

= (Vy E N)(si(0) ~ y D A(y)) 

= ( ~ y ~ s i ( O ) ) A ( y )  

by d e f i n i t i o n ,  so t h a t ,  again  by p r e s e r v a t i o n  of t r~tf l  under 

definitional equality, 

(~/y~ s±(O))A(y) true. 

Now, let a E N be an arbitrary infinite in the sense of nonstand- 

ard arithmetic, which is to say that 

sJ(0) ~ a true 

for all j = 0, I, etc., so that, in particular, 

si(0) ~ a true. 

Since the standard logical laws continue to hold in the nonstand- 

ard interpretation, we can then conclude 

A(a) true 
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by ~- and ~-elimination. Thus the nonstandard truth of A(~) 

entails that of A(a) for an arbitrary infinite a ~ N. 

Example 3. We already know that each ~i is infinite, but 

what does an arbitrary infinite a E N look like? By the defini- 

tion of the nonstandard model, 

a = f(~i ) ~ N 

for some i = 0, I, etc., where 

f (x)  mN (x ~N)  

is a standard number theoretic function. On the other hand, that 

a = f(~i ) E N is infinite in the sense of nonstandard arithmetic 

means, by definition, that 

sJ(o) ~ f(~i ) true 

for all j = 0, I, etc. By the definition of nonstandard truth, 

this means, in turn, that, for all j = 0, I, etc., there exists 

a stage k = 0, I, etc., such that 

sJ(0) ~ f(sk(x)) true (x E N)o 

Thus an infinite natural number is the image of an ~i under a 

standard number theoretic function which grows beyond all bounds. 

Example 4. Define a propositional function P(x) of the vari- 

able x ~ N by the recursion equations 

f P(o) = J_, 

e ( s ( x ) )  = ~ P ( x ) .  

This is easily done in standard type theory by means of the 
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universe axioms. In fact, the definition 

P(x) = T(rec(x,J . , (x ,y)~y))  

will do. Since we have ~ E N in the nonstandard extension, P(~) 

is a nonstandard proposition, and 

Thus, when it is evaluated lazily, P(~) appears as an endless 

sequence of negation signs. Is P(~) nonstandardly true or non- 

standardly false? Suppose it to be nonstandardly true. By defini- 

tion, this means that 

p(si(x)) true (x ~ N) 

at some stage i = O, I, etc. This entails that both p(si(O)) and 

p(si(s(O))) are true at that stage. But 

p(si(s(O))) = P(s(si(o))) = Np(si(o)), 

so that both p(si(O)) and Np(si(O)) would be true, which is im- 

possible. Thus P(~) is nonstandardly false. This being so, 

P(~i ) is actually nonstandardly false for all i = 0, I, etc., 

although P(~i ) = P(s(~i+1)) = -vP(~i+1). There is no contra- 

diction in this: it only shows that nonstandard truth fails to 

commute with negation, which comes as no surprise. Indeed, nega- 

tion is defined by the equation -~A = A ~J_, and we already know 

that nonstandard truth fails to commute with implication. 

Example 5. I shall construct a nonstandard element of List(N) 

which produces the stream of integers 

( O , ( s ( O ) , ( s ( s ( O ) ) , . . . ) ) )  
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when it is evaluated lazily. To this end, define the standard 

function 

f(1,n) ~ List(N) (I ~ N, ~ eN) 

by the pair of equations 

I f(O,n) = nil @ List(N), 

f(s(1),n) = (n,f(l,s(n))) E List(N). 

This is a double recursion, but, putting 

f(l,n) = app(g(1),n), 

it reduces to the primitive recursion 

g(O) = (An)nil e N--~List(N), 

g(s(1)) = (~ n)(n,app(g(1),s(n))) e N-~List(N), 

which has the solution 

g(1) = rec(l,(~n)ni!,(x,y)(kn)(n,apP(y,s(n)))) 

N-~List(N) 

in standard type theory. We can now use the axiom ~ EN to 

derive 

f(~,O) 6 List(N) 

in the nonstandard extension. Evaluating f(~,O) lazily, we get 

f (~ ,o )  = f ( s (~ ] ) ,o )  
= ( O , f ( ~ l , S ( O ) ) )  = ( O , f ( s ( ~ 2 ) , s ( O ) ) )  

= (O,(s(O),f(~2,s(s(o))))) .... 
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Thus the stream of integers is produced. 14 

Example 6. Let a projective system of nonempty sets of the 

sort that underlies the inductive limit interpretation be given 

internally, that is, suppose 

I A(n) set (n ~ N), 

f(n,x) E A(n) (n E N, x ~ A(s(n))), 

a(n) ~ A(n) (n E N) 

in the sense of the nonstandard model. Then we can construct an 

externally indexed sequence of elements 

~i e A(si(O)) 

which satisfy the equations 

~'l = f(si(O)'° (i+ 1) e A(si(O)) 

for i = O, I, etc. (We cannot, in general, have such a sequence 

internally without running into contradiction.) 

To see this, define first an auxiliary function 

g(1 ,n )  E A ( n )  ( l ~  N, n ~ f f )  

by the equations 

I g(O,n) = a(n) E A(n), 
g(s(1) ,n)  = f (n ,g (1 , s (n ) ) )  EA(n). 

14 The idea of dealing with stream computation by intro- 
ducing an infinite number is independently due to S. Goto, Non- 
standard normalization, US-Japan Workshop, Honolulu, May 1987. 
He proposes to apply Robinson's nonstandard analysis to interpret 
number theory extended by a new constant for the infinite number. 
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This is a double recursion, but it is readily solved in standard 

type theory by putting 

g(l,n) = app(h(1),n) E A(n), 

where 

h(1) e (TEn E N)A(n) (i ~ N) 

is defined by the primitive recursion 

l h(0) = (~n)a(n) ~ (]Tn ~ N)A(n), 

h(s(1)) = (kn)f(n,app(h(1),s(n))) ~ (ITn ~ N)A(n), 

which has the solution 

h(1) = rec(1,(~n)a(n),(x,y)(kn)f(n,app(y,s(n)))) 

 (Tin N)A(n). 

We can now put 

i = g(~i 'si(O)) e A(si(O)) 

for i = O, I, etc. This is an external sequence which satisfies 

~i = g(~i 'si(O)) 

= g(s(~i+1),si(O)) 

= f(si(O),g(~i+1,s(si(O)))) 

= f(si(O),g(~i+1,si+1(O))) 

= f(si(O), ~i+I ) E A(si(O)) 

as desired. This example explains the canonical character of the 

choice sequence o@ = s(o@1) = s(s(o@2)) = etc° , because, once we 

have access to it, we can define any other choice sequence as- 
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sociated with a projective system of nonempty sets, provided only 

that it is given internally. 

Example 7. Define by recursion a family of sets B(n) (n E N) 

satisfying the equations 

B(0) = NI, 

B(s(n)) = B(r,) + B(n). 

The universe axioms allow you to do this in standard type theory. 

Indeed, it suffices to put 

B(n) = T(rec(n,n 1,(x,y)(y + y))). 

Consider now the nonstandard set B(~). It satisfies the equa- 

tions 

B(~) = 3(s(~I)) 

= B(~]) + B(~ I) = B(s(oo2)) + B(s(~2)) 

= (B(~ 2) + B(~2)) + (B(~ 2) + B(~2)) 

Thus B(~) can be endlessly divided into two equal halves: it is 

a nonstandard version of the Cantor space. 15 Let Q denote the 

standard set of rational numbers. I shall show how to define the 

integral of a function 

f E B(c,o)- . .~ Q, 

which is as nonstandard as the set to which it belongs, of 

course, with respect to the usual uniform distribution. To this 

15 For a nonstandard version of the Cantor space in classical 
nonstandard analysis, see S. Albeverio et al., op. cit., p. 65. 
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end, define the sequence of sums 

S(n,f) E Q (n E N, f E B(n)-~Q) 

by the recursive equations 

S(0,f) : app ( f , 01 ) ,  

S ( s ( n ) , f )  = S ( n , ( k x ) a p p ( f , i ( x ) ) )  + S ( n , ( ~ y ) a p p ( f , j ( y ) ) ) .  

These are e a s i l y  solved in  s tandard  type theory  by pu t t i ng  

S(n,f) = app(F(n),f), 

where 

F(n) E (B(n)--~Q)--~Q (n ~ N) 

is defined by the primitive recursion 

I F(O) = ( k f ) a p p ( f , 0 1 ) ,  

F ( s (n ) )  = ( k f ) ( a p p ( F ( n ) , ( k x ) a p p ( f , i ( x ) ) )  

+ a p p ( F ( n ) , ( ~ y ) a p p ( f , j ( y ) ) ) ) .  

The analogue of the sequence of Riemann sums 

I(n,f) E Q (n E N, f E B(n)~-~Q) 

is defined by putting 

I(n,f) : s(n~f) 
2 n ' 

that is, by dividing S(n,f) by the total number of elements of 

the set B(n). We can now express the searched for integral of 

f E B(~)--~Q simply as 
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I ( ~ , f )  = s , ( ~ f )  
2 ~ 

This is a nonstandard rational number. Let us see what the se- 

quence of rational approximations is of which it is the limit. 

By the definition of the nonstandard model, the meaning of 

f E B(~) --~Q is that 

f = g(~i ) E B(sl(~i))-~Q = B(~)--~Q, 

where 

g(x) E B(si(x))--~Q (x E N) 

is a standard function. Hence 

I(~,f) : I(~,g(~i)) = I(si(~i),g(~i)), 

which is the value at ~i of the standard sequence of rational 

numbers 

l(si(x),g(x)) E Q (x E N). 

•his means that the rational approximations exist from stags i 

and onwards. At stage j = i, i+I, etc., the rational approxima- 

tion is obtained by running the program 

l(sJ(0),g(sJ-i(0))) E q. 

Convergence is another matter. 


