
100 years of Zermelo’s axiom of choice:
what was the problem with it?

Per Martin-Löf

Cantor conceived set theory in a sequence of six papers published in the
Mathematische Annalen during the five year period 1879-1884. In the fifth of
these papers, published in 1883,1 he stated as a law of thought (Denkgesetz)
that every set can be well-ordered or, more precisely, that it is always possible
to bring any well-defined set into the form of a well-ordered set. Now to call
it a law of thought was implicitly to claim self-evidence for it, but he must
have given up that claim at some point, because in the 1890’s he made an
unsuccessful attempt at demonstrating the well-ordering principle.2

The first to succeed in doing so was Zermelo,3 although, as a prerequisite
of the demonstration, he had to introduce a new principle, which came to be
called the principle of choice (Prinzip der Auswahl) respectively the axiom of
choice (Axiom der Auswahl) in his two papers from 1908.4,5 His first paper on
the subject, published in 1904, consists of merely three pages, excerpted by
Hilbert from a letter which he had received from Zermelo. The letter is dated
24 September 1904, and the excerpt begins by saying that the demonstration
came out of discussions with Erhard Schmidt during the preceding week,
which means that we can safely date the appearance of the axiom of choice
and the demonstration of the well-ordering theorem to September 1904.

Brief as it was, Zermelo’s paper gave rise to what is presumably the
most lively discussion among mathematicians on the validity, or acceptabil-
ity, of a mathematical axiom that has ever taken place. Within a couple of

1G. Cantor, Über unendliche lineare Punktmannigfaltigkeiten. Nr. 5, Math. Annalen,
Vol. 21, 1883, pp. 545-591. Reprinted in Gesammelte Abhandlungen, Edited by E. Zermelo,
Springer-Verlag, Berlin, 1932, pp. 165-208.

2G. H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence,
Springer-Verlag, New York, 1982, p. 51.

3E. Zermelo, Beweis, daß jede Menge wohlgeordnet werden kann. (Aus einem an Herrn
Hilbert gerichteten Briefe.), Math. Annalen, Vol. 59, pp. 514-516.

4E. Zermelo, Neuer Beweis für die Möglichkeit einer Wohlordnung, Math. Annalen, Vol.
65, 1908, pp. 107-128.

5E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre. I, Math. Annalen,
Vol. 65, 1908, pp. 261-281.
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years, written contributions to this discussion had been published by Felix
Bernstein, Schoenflies, Hamel, Hessenberg and Hausdorff in Germany, Baire,
Borel, Hadamard, Lebesgue, Richard and Poincaré in France, Hobson, Hardy,
Jourdain and Russell in England, Julius König in Hungary, Peano in Italy
and Brouwer in the Netherlands.6 Zermelo responded to those of these contri-
butions that were critical, which was a majority, in a second paper from 1908.
This second paper also contains a new proof of the well-ordering theorem,
less intuitive or less perspicuous, it has to be admitted, than the original
proof, as well as a new formulation of the axiom of choice, a formulation
which will play a crucial role in the following considerations.

Despite the strength of the initial opposition against it, Zermelo’s axiom
of choice gradually came to be accepted mainly because it was needed at an
early stage in the development of several branches of mathematics, not only
set theory, but also topology, algebra and functional analysis, for example.
Towards the end of the thirties, it had become firmly established and was
made part of the standard mathematical curriculum in the form of Zorn’s
lemma.7

The intuitionists, on the other hand, rejected the axiom of choice from
the very beginning, Baire, Borel and Lebesgue were all critical of it in their
contributions to the correspondence which was published under the title Cinq
lettres sur la théorie des ensembles in 1905.8 Brouwer’s thesis from 1907
contains a section on the well-ordering principle in which is treated in a
dismissive fashion (“of course there is no motivation for this at all”) and in
which, following Borel,9 he belittles Zermelo’s proof of it from the axiom of
choice.10 No further discussion of the axiom of choice seems to be found in
either Brouwer’s or Heyting’s writings. Presumably, it was regarded by them
as a prime example of a nonconstructive principle.

It therefore came as a surprise when, as late as in 1967, Bishop stated,

A choice function exists in constructive mathematics, because a
choice is implied by the very meaning of existence,11

6G. H. Moore, op. cit., pp. 92-137.
7M. Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc., Vol. 41,

1935, pp. 667-670.
8R. Baire, É. Borel, J. Hadamard and H. Lebesgue, Cinq lettres sur la théorie des

ensembles, Bull. Soc. Math. France, Vol. 33, 1905, pp. 261-273.
9É. Borel, Quelques remarques sur les principes de la théorie des ensembles, Math.

Annalen, Vol. 60, 1905, pp. 194-195.
10L. E. J. Brouwer, Over de grondslagen der wiskunde, Maas & van Suchtelen, Am-

sterdam, 1907. English translation in Collected Works, Vol. 1, Edited by A. Heyting,
North-Holland, Amsterdam, 1975, pp. 11-101.

11E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967, p. 9.
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although, in the terminology that he himself introduced in the subsequent
chapter, he ought to have said “choice operation” rather than “choice func-
tion”. What he had in mind was clearly that the truth of

(∀i : I)(∃x : S)A(i, x) → (∃f : I → S)(∀i : I)A(i, f(i))

and even, more generally,

(∀i : I)(∃x : Si)A(i, x) → (∃f :
∏
i:I

Si)(∀i : I)A(i, f(i))

becomes evident almost immediately upon remembering the Brouwer-Hey-
ting-Kolmogorov interpretation of the logical constants, which means that
it might as well have been observed already in the early thirties. And it is
this intuitive justification that was turned into a formal proof in constructive
type theory, a proof that effectively uses the strong rule of ∃-elimination that
it became possible to formulate as a result of having made the proof objects
appear in the system itself and not only in its interpretation.

In 1975, soon after Bishop’s vindication of the constructive axiom of
choice, Diaconescu proved that, in topos theory, the law of excluded middle
follows from the axiom of choice.12 Now, topos theory being an intuition-
istic theory, albeit impredicative, this is on the surface of it incompatible
with Bishop’s observation because of the constructive inacceptability of the
law of excluded middle. There is therefore a need to investigate how the
constructive axiom of choice, validated by the Brouwer-Heyting-Kolmogorov
interpretation, is related to Zermelo’s axiom of choice on the one hand and
to the topos-theoretic axiom of choice on the other.

To this end, using constructive type theory as our instrument of analysis,
let us simply try to prove Zermelo’s axiom of choice. This attempt should
of course fail, but in the process of making it we might at least be able
to discover what it is that is really objectionable about it. So what was
Zermelo’s axiom of choice? In the original paper from 1904, he gave to it the
following formulation,

Jeder Teilmenge M ′ denke man sich ein beliebiges Element m′
1

zugeordnet, das in M ′ selbst vorkommt und das „ausgezeichnete”
Element von M ′ genannt werden möge.13

Here M ′ is an arbitrary subset, which contains at least one element, of a
given set M . What is surprising about this formulation is that there is

12R. Diaconescu, Axiom of choice and complementation, Proc. Amer. Math. Soc., Vol.
51, 1975, pp. 176-178.

13E. Zermelo, op. cit., footnote 3, p. 514.
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nothing objectionable about it from a constructive point of view. Indeed,
the distinguished element m′

1 can be taken to be the left projection of the
proof of the existential proposition (∃x : M)M ′(x), which says that the subset
M ′ of M contains at least one element. This means that one would have to
go into the demonstration of the well-ordering theorem in order to determine
exactly what are its nonconstructive ingredients.

Instead of doing that, I shall turn to the formulation of the axiom of choice
that Zermelo favoured in his second paper on the well-ordering theorem from
1908,

Axiom. Eine Menge S, welche in eine Menge getrennter Teile A,
B, C, . . . zerfällt, deren jeder mindestens ein Element enthält,
besitzt mindestens eine Untermenge S1, welche mit jedem der be-
trachteten Teile A, B, C, . . . genau ein Element gemein hat.14

Formulated in this way, Zermelo’s axiom of choice turns out to coincide with
the multiplicative axiom, which Whitehead and Russell had found indispens-
able for the development of the theory of cardinals.15,16 The type-theoretic
rendering of this formulation of the axiom of choice is straightforward, once
one remembers that a basic set in the sense of Cantorian set theory corre-
sponds to an extensional set, that is, a set equipped with an equivalence
relation, in type theory, and that a subset of an extensional set is interpreted
as a propositional function which is extensional with respect to the equiva-
lence relation in question. Thus the data of Zermelo’s 1908 formulation of
the axiom of choice are a set S, which comes equipped with an equivalence
relation =S, and a family (Ai)i:I of propositional functions on S satisfying
the following properties,

(1) x =S y → (Ai(x) ↔ Ai(y)) (extensionality),

(2) i =I j → (∀x : S)(Ai(x) ↔ Aj(x)) (extensionality of the dependence
on the index),

(3) (∃x : S)(Ai(x) & Aj(x)) → i =I j (mutual exclusiveness),

(4) (∀x : S)(∃i : I)Ai(x) (exhaustiveness),

(5) (∀i : I)(∃x : S)Ai(x) (nonemptiness).
14E. Zermelo, op. cit., footnote 4, p. 110.
15A. N. Whitehead, On cardinal numbers, Amer. J. Math., Vol. 24, 1902, pp. 367-394.
16B. Russell, On some difficulties in the theory of transfinite numbers and order types,

Proc. London Math. Soc., Ser. 2, Vol. 4, 1906, pp. 29-53.
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Given these data, the axiom guarantees the existence of a propositional func-
tion S1 on S such that

(6) x =S y → (S1(x) ↔ S1(y)) (extensionality),

(7) (∀i : I)(∃!x : S)(Ai ∩ S1)(x) (uniqueness of choice).

The obvious way of trying to prove (6) and (7) from (1)-(5) is to apply the
type-theoretic (constructive, intensional) axiom of choice to (5), so as to get
a function f : I → S such that

(∀i : I)Ai(f(i)),

and then define S1 by the equation

S1 = {f(j) | j : I} = {x | (∃j : I)(f(j) =S x)}.

Defined in this way, S1 is clearly extensional, which is to say that it satisfies
(6). What about (7)? Since the proposition

(Ai ∩ S1)(f(i)) = Ai(f(i)) & S1(f(i))

is clearly true, so is
(∀i : I)(∃x : S)(Ai ∩ S1)(x),

which means that only the uniqueness condition remains to be proved. To
this end, assume that the proposition

(Ai ∩ S1)(x) = Ai(x) & S1(x)

is true, that is, that the two propositions{
Ai(x),
S1(x) = (∃j : I)(f(j) =S x),

are both true. Let j : I satisfy f(j) =S x. Then, since (∀i : I)Ai(f(i)) is
true, so is Aj(f(j)). Hence, by the extensionality of Aj with respect to =S,
Aj(x) is true, which, together with the assumed truth of Ai(x), yields i =I j
by the mutual exclusiveness of the family of subsets (Ai)i:I . At this stage, in
order to conclude that f(i) =S x, we need to know that the choice function
f is extensional, that is, that

i =I j → f(i) =S f(j).

This, however, is not guaranteed by the constructive, or intensional, axiom
of choice which follows from the strong rule of ∃-elimination in type theory.
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Thus our attempt to prove Zermelo’s axiom of choice has failed, as was to
be expected.

On the other hand, we have succeeded in proving that Zermelo’s axiom
of choice follows from the extensional axiom of choice

(∀i : I)(∃x : S)Ai(x) → (∃f : I → S)(Ext(f) & (∀i : I)Ai(f(i))),

which I shall call ExtAC, where

Ext(f) = (∀i, j : I)(i =I j → f(i) =S f(j)).

The only trouble with it is that it lacks the evidence of the intensional axiom
of choice, which does not prevent one from investigating its consequences, of
course.

Theorem I. The following are equivalent in constructive type theory:
(i) The extensional axiom of choice.
(ii) Zermelo’s axiom of choice.
(iii) Epimorphisms split, that is, every surjective extensional function has an
extensional right inverse.
(iv) Unique representatives can be picked from the equivalence classes of any
given equivalence relation.

Of these four equivalent statements, (iii) is the topos-theoretic axiom of
choice, which is thus equivalent, not to the constructively valid type-theoretic
axiom of choice, but to Zermelo’s axiom of choice.

Proof. We shall prove the implications (i)→(ii)→(iii)→(iv)→(i) in this
order.

(i)→(ii). This is precisely the result of the considerations prior to the
formulation of the theorem.

(ii)→(iii). Let S, =S and I, =I be two extensional sets, and let f : S → I
be an extensional and surjective mapping between them. By definition, put

Ai = f−1(i) = {x|f(x) =I i}.

Then

(1) x =S y → (Ai(x) ↔ Ai(y))

by the assumed extensionality of f ,

(2) i =I j → (∀x : S)(Ai(x) ↔ Aj(x))

since f(x) =I i is equivalent to f(x) =I j provided that i =I j,

(3) (∃x : S)(Ai(x) & Aj(x)) → i =I j
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since f(x) =I i and f(x) =I j together imply i =I j,

(4) (∀x : S)(∃i : I)Ai(x)

since Af(x)(x) for any x : S, and

(5) (∀i : I)(∃x : S)Ai(x)

by the assumed surjectivity of the function f . Therefore we can apply Zer-
melo’s axiom of choice to get a subset S1 of S such that

(∀i : I)(∃!x : S)(Ai ∩ S1)(x).

The constructive, or intensional, axiom of choice, to which we have access in
type theory, then yields g : I → S such that (Ai ∩ S1)(g(i)), that is,

(f(g(i)) =I i) & S1(g(i)),

so that g is a right inverse of f , and

(Ai ∩ S1)(x) → g(i) =S x.

It remains only to show that g is extensional. So assume i, j : I. Then we
have

(Ai ∩ S1)(g(i))

as well as
(Aj ∩ S1)(g(j))

so that, if also i =I j,
(Ai ∩ S1)(g(j))

by the extensional dependence of Ai on the index i. The uniqueness property
of Ai ∩ S1 permits us to now conclude g(i) =S g(j) as desired.

(iii)→(iv). Let I be a set equipped with an equivalence relation =I . Then
the identity function on I is an extensional surjection from I, IdI to I, =I ,
since any function is extensional with respect to the identity relation. As-
suming that epimorphisms split, we can conclude that there exists a function
g : I → I such that

g(i) =I i

and
i =I j → IdI(g(i), g(j)),

which is to say that g has the miraculous property of picking a unique rep-
resentative from each equivalence class of the given equivalence relation =I .
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(iv)→(i). Let I, =I and S, =S be two sets, each equipped with an equiv-
alence relation, and let (Ai)i:I be a family of extensional subsets of S,

x =S y → (Ai(x) ↔ Ai(y)),

which depends extensionally on the index i,

i =I j → (∀x : S)(Ai(x) ↔ Aj(x)).

Furthermore, assume that

(∀i : I)(∃x : S)Ai(x)

holds. By the intensional axiom of choice, valid in constructive type theory,
we can conclude that there exists a choice function f : I → S such that

(∀i : I)Ai(f(i)).

This choice function need not be extensional, of course, unless =I is the
identity relation on the index set I. But, applying the miraculous principle
of picking a unique representative of each equivalence class to the equivalence
relation =I , we get a function g : I → I such that

g(i) =I i

and
i =I j → IdI(g(i), g(j)).

Then f ◦ g : I → S becomes extensional,

i =I j → IdI(g(i), g(j)) → f(g(i))︸ ︷︷ ︸
(f◦g)(i)

=S f(g(j))︸ ︷︷ ︸
(f◦g)(j)

.

Moreover, from (∀i : I)Ai(f(i)), it follows that

(∀i : I)Ag(i)(f(g(i))).

But
g(i) =I i → (∀x : S)(Ag(i)(x) ↔ Ai(x)),

so that
(∀i : I)Ai(f(g(i))︸ ︷︷ ︸

(f◦g)(i)

).

Hence f ◦g has become an extensional choice function, which means that the
extensional axiom of choice is satisfied.
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Another indication that the extensional axiom of choice is the correct
type-theoretic rendering of Zermelo’s axiom of choice comes from construc-
tive set theory. Peter Aczel has shown how to interpret the language of
Zermelo-Fraenkel set theory in constructive type theory, this interpretation
being the natural constructive version of the cumulative hierarchy, and in-
vestigated what set-theoretical principles that become validated under that
interpretation.17 But one may also ask, conversely, what principle, or princi-
ples, that have to be adjoined to constructive type theory in order to validate
a specific set-theoretical axiom. In particular, this may be asked about the
formalized version of the axiom of choice that Zermelo made part of his own
axiomatization of set theory. The answer is as follows.

Theorem II. When constructive type theory is strengthened by the exten-
sional axiom of choice, the set-theoretical axiom of choice becomes validated
under the Aczel interpretation.

Proof. The set-theoretical axiom of choice says that, for any two iterative
sets α and β and any relation R between iterative sets,

(∀x ∈ α)(∃y ∈ β)R(x, y) → (∃φ : α → β)(∀x ∈ α)R(x, φ(x)).

The Aczel interpretation of the left-hand member of this implication is

(∀x : ᾱ)(∃y : β̄)R(α̃(x), β̃(x)),

which yields
(∃f : ᾱ → β̄)(∀x : ᾱ)R(α̃(x), β̃(f(x)))

by the type-theoretic axiom of choice. Now, put

φ = {〈α̃(x), β̃(f(x))〉|x : ᾱ}

by definition. We need to prove that φ is a function from α to β in the sense
of constructive set theory, that is,

α̃(x) = α̃(x′) → β̃(f(x)) = β̃(f(x′)).

Define the equivalence relations

(x =ᾱ x′) = (α̃(x) = α̃(x′))

and
(y =β̄ y′) = (β̃(y) = β̃(y′))

17P. Aczel, The type theoretic interpretation of constructive set theory, Logic Colloquium
’77, Edited by A. Macintyre, L. Pacholski and J. Paris, North-Holland, Amsterdam, 1978,
pp. 55-66.

9



on ᾱ and β̄, respectively. By the extensional axiom of choice in type theory,
the choice function f : ᾱ → β̄ can be taken to be extensional with respect to
these two equivalence relations,

x =ᾱ x′ → f(x) =β̄ f(x′),

which ensures that φ, defined as above, is a function from α to β in the sense
of constructive set theory.

Corollary. When constructive type theory (including one universe and
the W -operation) is strengthened by the extensional axiom of choice, it in-
terprets all of ZFC.

Proof. We already know from Aczel that ZF is equivalent to CZF +
EM.18 Hence ZFC is equivalent to CZF + EM + AC. But, by Diaconescu’s
theorem as transferred to constructive set theory by Goodman and Myhill,
the law of excluded middle follows from the axiom of choice in the context
of constructive set theory.19 It thus suffices to interpret CZF + AC in CTT
+ ExtAC, and this is precisely what the Aczel interpretation does, by the
previous theorem.

Another way of reaching the same conclusion is to interchange the order
of the last two steps in the proof just given, arguing instead that ZFC =
CZF + EM + AC is interpretable in CTT + EM + ExtAC by the previous
theorem, and then appealing to the type-theoretical version of Diaconescu’s
theorem, according to which the law of excluded middle follows from the
extensional axiom of choice in the context of constructive type theory.20 The
final conclusion is anyhow that ZFC is interpretable in CTT+ExtAC.

When Zermelo’s axiom of choice is formulated in the context of construc-
tive type theory instead of Zermelo-Fraenkel set theory, it appears as ExtAC,
the extensional axiom of choice

(∀i : I)(∃x : S)A(i, x) → (∃f : I → S)(Ext(f) & (∀i : I)A(i, f(i))),

where
Ext(f) = (∀i, j : I)(i =I j → f(i) =S f(j)),

and it then becomes manifest what is the problem with it: it breaks the
principle that you cannot get something from nothing. Even if the relation
A(i, x) is extensional with respect to its two arguments, the truth of the

18P. Aczel, op. cit., p. 59.
19N. D. Goodman and J. Myhill, Choice implies excluded middle, Zeitschrift für math-

ematische Logik und Grundlagen der Mathematik, Vol. 24, 1978, p. 461.
20S. Lacas and B. Werner, Which choices imply the Excluded Middle? About Dia-

conescu’s trick in Type Theory, Unpublished, 1999, pp. 9-10. I am indebted to Jesper
Carlström for providing me with this reference.
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antecedent (∀i : I)(∃x : S)A(i, x), which does guarantee the existence of
a choice function f : I → S satisfying (∀i : I)A(i, f(i)), is not enough
to guarantee the extensionality of the choice function, that is, the truth of
Ext(f). Thus the problem with Zermelo’s axiom of choice is not the existence
of the choice function but its extensionality, and this is not visible within an
extensional framework, like Zermelo-Fraenkel set theory, where all functions
are by definition extensional.

If we want to ensure the extensionality of the choice function, the an-
tecedent clause of the extensional axiom of choice has to be strengthened.
The natural way of doing this is to replace ExtAC by AC!, the axiom of
unique choice, or no choice,

(∀i : I)(∃!x : S)A(i, x) → (∃f : I → S)(Ext(f) & (∀i : I)A(i, f(i))),

which is as valid as the intensional axiom of choice. Indeed, assume (∀i :
I)(∃!x : S)A(i, x) to be true. Then, by the intensional axiom of choice, there
exists a choice function f : I → S satisfying (∀i : I)A(i, f(i)). Because of the
uniqueness condition, such a function f : I → S is necessarily extensional.
For suppose that i, j : I are such that i =I j is true. Then A(i, f(i)) and
A(j, f(j)) are both true. Hence, by the extensionality of A(i, x) in its first
argument, so is A(i, f(j)). The uniqueness condition now guarantees that
f(i) =S f(j), that is, that f : I → S is extensional. The axiom of unique
choice AC! may be considered as the valid form of extensional choice, as
opposed to ExtAC, which lacks justification.

The inability to distinguish between the intensional and the extensional
axiom of choice has led to one’s taking the need for the axiom of choice in
proving that the union of a countable sequence of countable sets is again
countable, that the real numbers, defined as Cauchy sequences of rational
numbers, are Cauchy complete, etc., as a justification of Zermelo’s axiom
of choice. As Zermelo himself wrote towards the end of the short paper in
which he originally introduced the axiom of choice,

Dieses logische Prinzip läßt sich zwar nicht auf ein noch ein-
facheres zurückführen, wird aber in der mathematischen Deduk-
tion überall unbedenklich angewendet.21

What Zermelo wrote here about the omnipresent, and often subconscious,
use of the axiom of choice in mathematical proofs is incontrovertible, but it
concerns the constructive, or intensional, version of it, which follows almost
immediately from the strong rule of existential elimination. It cannot be

21E. Zermelo, op. cit., footnote 3, p. 516.
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taken as a justification of his own version of the axiom of choice, including
as it does the extensionality of the choice function.

Within an extensional foundational framework, like topos theory or con-
structive set theory, it is not wholly impossible to formulate a counterpart
of the constructive axiom of choice, despite of its intensional character, but
it becomes complicated. In topos theory, there is the axiom that there are
enough projectives, which is to say that every object is the surjective image
of a projective object, and, in constructive set theory, Aczel has introduced
the analogous axiom that every set has a base.22 Roughly speaking, this
is to say that every set is the surjective image of a set for which the ax-
iom of choice holds. The technical complication of these axioms speaks to
my mind for an intensional foundational framework, like constructive type
theory, in which the intuitive argument why the axiom of choice holds on
the Brouwer-Heyting-Kolmogorov interpretation is readily formalized, and
in which whatever extensional notions that are needed can be built up, in
agreement with the title of Martin Hofmann’s thesis, Extensional Constructs
in Intensional Type Theory.23 Extensionality does not come for free.

Finally, since this is only a couple of weeks from the centenary of Zer-
melo’s first formulation of the axiom of choice, it may not be out of place to
remember the crucial role it has played for the formalization of both Zermelo-
Fraenkel set theory and constructive type theory. In the case of set theory,
there was the need for Zermelo of putting his proof of the well-ordering the-
orem on a formally rigorous basis, whereas, in the case of type theory, there
was the intuitively convincing argument which made axiom of choice evident
on the constructive interpretation of the logical operations, an argument
which nevertheless could not be faithfully formalized in any then existing
formal system.

22P. Aczel, The type theoretic interpretation of constructive set theory: choice principles,
The L. E. J. Brouwer Centenary Symposium, Edited by A. S. Troelstra and D. van Dalen,
North-Holland, Amsterdam, 1982, pp. 1-40.

23M. Hofmann, Extensional Constructs in Intensional Type Theory, Springer-Verlag,
London, 1997.
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