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The title of Sverdrup's article is Tests without 
power, by which he apparently means Tests con- 
structed without power considerations. For, although 
my exact tests, against which it is directed, are con- 
structed without power considerations, they cer- 
tainly do not lack power in the Neyman-Pearson 
sense. 

A principle of statistical inference, like unbiased- 
ness, invariance, the likelihood principle, or the 
principle that I have proposed, is a codification of 
statistical practice. Thus, what makes such a prin- 
ciple correct, is that it adequately accounts for well- 
established parts of statistical practice. There is no 
question of staring at the principle as it stands and 
trying to feel whether or not it is convincing. Con- 
versely, to refute such a principle, we must show that 
it conflicts with the way statisticians actually behave 
or would behave in a particular case. This is what 
Sverdrup tries to do with the principle for testing 
reductive statistical hypotheses that I have called 
exact. To counter his criticism, I shall have to go 
through all his examples, showing that, in some of 
them, the hypothesis that he considers, although a 
hypothesis in the Neyman-Pearson sense, is not 
reductive, and that, in the remaining ones, despite 
of what Sverdrup says, it is the exact test, and 
neither the test favoured by him, nor the uniformly 
most powerful unbiased one, which is in agreement 
with common sense. (Thus these latter examples, 
rather than refuting the exact test, refute the prin- 
ciple of unbiasedness.) Whether this sense is in fact 
common, can of course only be decided by public 
discussion. If the publication of this polemic can 
contribute to such a discussion, it will have served its 
purpose. 

Before turning to the examples, however, I want 
to make two comments on the introduction. First, 
Sverdrup says that my principle "disregards the 
alternatives except for the purpose of constructing 
the minimal sufficient statistic X under the a priori 
assumptions." (Here X is his notation for my t(x).) 
This is misleading. In the Neyman-Pearson theory, 
a statistical model is a family H of probability 

distributions on a sample space X, and a hypothesis 
Ho is a subset of H. In my theory, the sample spaceX 
is retained, but H is replaced by a statistic t(x) and 
Hoc H by a statistic u(x) u(t(x)) which factors 
through t(x). Hence the alternatives HL =H-Ho are 
in no way disregarded in my theory: they are just 
differently specified. Instead of specifying HL or 
H =Ho U H1, I specify a statistic t(x) which induces 
a finer partitioning of the sample space than u(x) = 

u(t(x)). Cf. also Cox's question on p. 15 and my 
answer to it on p. 17 of Martin-Lof (1974a). Second, 
Sverdrup asks if it is meant as an assumption that 
the conditional (in my terminology, microcanonical) 
distribution of x given that t(x) = t is uniform, and 
that, under the hypothesis, the distribution of x given 
that u(x) = u(t(x)) = u is also uniform. Yes, this is an 
assumption. And it is this assumption which allows 
me to specify a statistical model by simply giving the 
sample space X (with its Riemannian metric in the 
continuous case) and the statistic t(x). Otherwise, I 
would also have to specify a measure on X, and it 
would be mysterious where that measure should come 
from if it were not simply the uniform measure, that 
is, in the continuous case, the Riemannian measure 
determined by the metric. That an observation x can 
be described by the model whose sample space is X 
and whose statistic is t(x), means precisely that x 
can be considered as drawn at random from (that is, 
according to the uniform distribution on) the set X, 
of all outcomes y for which t(y) = t =the observed 
value of t(x). And the hypothesis is that x can be 
considered as drawn at random from the larger set 
Xu, of all outcomes y for which u(y) = u(t(y)) = u = the 
observed value of u(x) = u(t(x)). 

Example 1. Card dealing in bridge. The sample 
space consists of all possible deals, and Sverdrup 
wants to test the hypothesis that 

the mixing is perfect (no cheating) 

against the alternative that 

the deal is favourable to the dealer. 
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He also considers the reductive hypothesis that the 
statistic 

t(x) = t if x belongs to Gt 

can be reduced to the trivial statistic 

u(x) = constant. 

This latter hypothesis is rejected by the exact test 
provided the ratio Nt(c)/N is sufficiently small. 

No doubt, choosing u(x) =constant is the correct 
way of expressing the hypothesis of perfect mixing 
as a reductive hypothesis. But the exact test con- 
sidered by Sverdrup tests this hypothesis against the 
alternative that the deal x can be considered as drawn 
at random from the set Gt(X) of all deals which are as 
favourable to the dealer as the particular deal x, 
quite independently of the numerical value of t(x). 
This is not the alternative in which Sverdrup is inter- 
ested, namely, that the deal is favourable to the 
dealer. 

If we index the sets Gt in such a way that t(x) is 
the gain of the dealer measured in a suitable mone- 
tary unit, it makes sense to introduce the parametric 
model 

eat(x) 

pa(X T r -? 0-< a < + o. 

E, N ete 
t=l 

In terms of this model, the exact test considered by 
Sverdrup tests the hypothesis a = 0 against the alterna- 
tive a*O, whereas the alternative which he actually 
has in mind is a >0. Such one-sided hypotheses are 
not reductive and hence fall outside of my frame- 
work. And I have never suggested that the exact 
test should be applied to them. 

Example 2. Non-paying passengers on tramcars. 
In this example, Sverdrup wants to test the hypo- 
thesis p =0.001 or p 60.001 (it is not quite clear 
which, but it does not matter) where p is the para- 
meter of the geometric distibution p(l -p)'-', x = 1, 
2, ..., 0 <p ?1, against the alternative p >0.001. 
Again, this is a one-sided and not a reductive hypo- 
thesis, and hence it falls outside the scope of my 
theory. Changing the geometric distribution into 

zN-xi 

ta- I (N- x) (N- x- 1)... (N-x - a+ 1) 
(N) N(N- 1) ... (N-a+ 1) 

does not remedy the situation as long as the alterna- 
tive remains one-sided, that is, as long as we are 
testing p = a/N =po (or <po) against p >po. 

Example 3. This is an elaboration of the previous 
example. We have one sample xl, ..., xm from the geo- 
metric distribution p(l -p)'-1 and another sample 
Yi, ..., yn from the geometric distribution q(l -q)Y-l 
and want to test the hypothesis p = q. If we consider 
the one-sided alternative p > q, the hypothesis is not 
reductive and hence falls outside of my framework. 
On the other hand, when considered against the two- 
sided alternative p*q, p =q is nothing but the para- 
metric specification of the reductive hypothesis 

m n m n 

tc xi, bi yj )=U. 

Putting 

m n 
x= Xi, y='Zyj=u-x, 

1 1 

the exact test rejects this hypothesis in the tail of 
the distribution 

{x - I u-x-li 

p.(x) =_ _ _ __ _ _ 

(m:= - ) ) 

Vm+n-I1 

which is related to the negative binomial distribution 
in the same way as the hypergeometric distribution is 
related to the ordinary binomial distribution. 

Now, specialize, as Sverdrup does, to the case 
m =1. If, in addition, n = 1, then 

I 
P.(x) = -1 x=1, 2, ...,u-1. 

Hence, in this case, the exact test never rejects, that 
is, the critical level is constantly equal to one. This 
is entirely as it should be. When m =n = 1, whatever 
be the values of x and y, there is simply no informa- 
tion in the observations as to whether p =q or p*q. 
Any values of x and y are compatible with the hypo- 
thesis p = q provided p and q are sufficiently small. 
Sverdrup, on the other hand, seems to consider it as 
a defect that the exact test gives no guidance when 
m = n = 1. I cannot understand why. 

When m=1 andn>1, 

p (x) =( - ) 
(u1) 

decreases monotonically as x increases from 1 to 
u - n, and hence the exact test rejects the hypothesis 

Scand J Statist 2 



Reply to Sverdrup 163 

when x is sufficiently large, that is, close to u - n. 
Sverdrup finds it paradoxical that, although the 
hypothesis is two-sided, the critical region becomes 
one-sided, and thinks that we ought of course to 
reject the hypothesis when x is close to either 1 or 
u - n. It is also easy to see that a uniformly most 
powerful unbiased test exists and has a (randomized, 
in general) criterial region of the form favoured by 
Sverdrup. Now, since p.(x) is monotonically decreas- 
ing, rejecting when x is close to 1 amounts to rejecting 
for the values which are most probable under the hypo- 
thesis. Against this, I have two objections. First, I 
know of no case when one has rejected a statistical 
hypothesis after having observed the most probable 
value under the hypothesis, and I would not do so 
myself. Second, in order that it should be at all 
possible to reject the hypothesis for the most prob- 
able value of the distribution without randomiza- 
tion, the probability of this value must not exceed 
the level of significance e (=0.01, say). This means 
that the distribution must contain at least 1/e (= 100 
if e = 0.01) possible values, that is, be very much 
spread out and hence, on an appropriate scale, 
practically continuous. Considerations about the 
measuring accuracy of the kind that I shall make in 
connection with Example 4 then become crucial. Be- 
fore turning to it, however, I must show how the 
notions of statistical model, reductive hypothesis and 
exact test are defined in the finite-dimensional 
continuous case. 

The sample space X is then assumed to be an n- 
dimensional Riemannian manifold, that is, a mani- 
fold endowed with a Riemannian metric G = (gij) 
which determines the distance 

ds = /'dxTGdx = V/ gj dxi dxj 
t. j 

between two infinitesimally close points (whose local 
coordinate vectors are) x and x + dx. Here and in the 
following the sign ' denotes transposition. The 
metric, in turn, determines the Riemannian measure 
on X 

dA = 1/det Gdxl ... dxn 

which is invariant under smooth coordinate changes. 
A statistic t(x) is a smooth mapping from the sample 
space X onto a manifold T of dimension p < n which 
is subjected to the following two conditions. First, 
letting 

dt (ot,) 
dx 

= 
ax) 

be the tangent map, it is required that JG-1J' should 
be invertible, that is, 

det JG-1J' > 0, 

and constant on the surface Xt where t(x) = t, so that 
we can write 

(JG-1J')(x) = (JG-1J')(t(x)). 

Geometrically, this means that the infinitesimally 
close surfaces Xt and Xt+dt are parallel. Second, 

f(t) = XdAt = At(xd < + c> 
for all t in T. Here At is the surface measure on Xt, 
that is, the measure which is determined by the met- 
ric which Xt inherits from the metric on X. 

Because of the first condition, the given metric G 
on X induces in a natural way a metric on T, namely, 
the metric 

(JG-1J')-1. 

Geometrically, the distance 

Vdt'(JG-'J')-1dt 

between two infinitesimally close points t and t + dt 
in this metric, is the perpendicular distance between 
the infinitesimally close surfaces Xt and Xt+dt meas- 
ured in the metric G. This distance is welldefined 
since, by assumption, Xt and Xt+dt are parallel. The 
measure on T determined by the metric (JG-1J')-l 
is 

dy = Vdet (JG - 'J')-dt, ... dtp= -dt .. 
dp_ 

1I det JG1J 

This measure is invariantly defined (under smooth 
coordinate changes) since it is the Riemannian meas- 
ure derived from the metric (JG-1J')-1 which, in 
turn, is determined by the given metric G on X and 
the statistic t(x). The measure dA on X can be de- 
composed according to the (geometrically obvious) 
formula 

dA = dAtd,y 

Integrating out with respect to dAt, we see that the 
function f(t) on T is the density with respect to dMc 
of the measure induced by the measure dA on X 
under the statistic t(x). It is the function f(t) which, 
in the discrete case, is simply the number of out- 
comes x such that t(x) = t. The above definition of 
f(t) in the continuous case should replace the defec- 
tive definition which I have given earlier in Martin- 
Lof (1970) and (1974b). 

A reductive hypothesis states that 

t(x) can be reduced to u(x) = u(t(x)) 
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where u(t) is a smooth mapping from T onto a mani- 
fold U of dimension q <p which is such that the 
composite function u(x) = u(t(x)) is a statistic. (The 
difference p - q is the number of degrees of freedom 
of the hypothesis.) With 

ddu Iaui 
dt atj 

so that 

du= du dt 
-= = KJ, dx dt dx 

this means, first, that (KJ)G-1(KJ)' should be inver- 
tible and constant on the surface Xu, where u(x) = u, 
or, equivalently, that K(JG-'J')K' should be so on 
the surface T. where u(t) = u, and, second, that 

g(u) = dA)= T f(t)dpu < + 

for all u in U. Here d4ua is the surface measure on 
Tu, that is, the measure which is determined by the 
metric which Tu inherits from the metric (JG-1J')-l 
on T. Just as in the discrete case, the exact test re- 
jects the hypothesis that t(x) can be reduced to u(x) = 

u(t(x)) if the ratio 

f(t) 
g(u)' 

which satisfies 

J'f(t) dIu 1 
J Ug(U) 

is sufficiently small. This ratio is the conditional 
probability density of t(x) given that u(x) =u with 
respect to the surface measure dyu. 

Example 4. We have samples xl, ..., xm and Yi, 
yn from normal distributions with means $ and X 
and standard deviations a1 and a2, respectively, and 
want to test the hypothesis al = a2. The condition 
a, = a2 is the parametric specification of the reductive 
hypothesis 

t = (x, 9, z1, z2) (x, Y, Zl +Z2) = U, 

where 

I m n m 

X-E IXi, i=-EYj, zi (Xi - 9)2 

n 

Z2= (E -Y)2, 

and hence the exact test can be applied. According 
to it, we shall reject the hypothesis when the ratio 
f(t)/g(u) is sufficiently small, the functions f(t) and 
g(u) being defined as above. Computation yields 

f(t) 2 
g(u) B((m-1)/2, (n-1)/2)z(m+n-3)l2 

X zim - 2)/2 (z_ z )(n -2)/2, Z = Zl + Z2 

which is the conditional probability density of t for 
fixed u with respect to the measure 

d,' 2 z| (z d 
Z) 

That the exponents of z1 and z - z1 in the expression 
for f(t)/g(u) are (m - 2)/2 and (n -2)/2 and not 
(m - 3)/2 and (n - 3)/2 as in Sverdrups expression, is 
a consequence of my correction of the definition of 
f(t) in the continuous case. Fortunately, the correc- 
tion does not affect Sverdrup's argument in an essen- 
tial way: we merely have to put m =2 instead of 
m = 3. Indeed, when m =2, 

f(t) 2 (n-2)12 

g(u) B(1/2, (n - l)/2) z(n-l)/2 

which is a decreasing function of z1 provided n > 2. 
Thus the exact test rejects the hypothesis a, = a2 when 
zl is sufficiently large. Just as in Example 3, Sverdrup 
thinks that, since the hypothesis is two-sided, the 
critical region ought to be two-sided as well, that is, 
that we ought to reject if z1 is either large or small. 
Now, there are at least three different ways of distrib- 
uting the total level of significance e =o?+ s be- 
tween the two tails. Here -s and e1 are the probabili- 
ties of rejecting the hypothesis when zl/z is close to 
O and 1, respectively. 

(1) Sverdrup proposes the rule of thumb eo = 1 
E/2. To me, this seems wholly arbitrary unless the 
distribution is symmetric, that is, m =n, in which 
case the principle of uniformly most powerful un- 
biasedness leads to precisely this result. If m =n > 2, 
the distribution is both symmetric and unimodal, 
and hence the exact test also yields eo = e1/2. 

(2) The uniformly most powerful unbiased test is 
always two-sided (even when m or n = 2) and 

n-i rn-i 
som+n 262 es 1 n-2' 

when e--O. In the maximally asymmetric case m =2 
that Sverdrup considers, 

n-i 1 
n , n18--E. 
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Hence, if m = 2 and n is not too small, the uniformly 
most powerful unbiased test places almost all of the 
significance level in the left tail, that is, the tail 
where the probability density is high. This must, I 
think, lead us to reject the principle of unbiased- 
ness. 

(3) The critical region of the exact test is two- 
sided when m and n >2 and one-sided when m =2 
and n > 2. Hence, in the latter case, so = 0 and es =e. 
This is what Sverdrup finds paradoxical and leads 
him to reject the principle on which the exact test is 
based. 

My arguments for the exact test and against un- 
biasedness as well as the rule of thumb favoured by 
Sverdrup, are essentially the same as in Example 3. 
First, I know of no case where there has been agree- 
ment among statisticians that a hypothesis should 
be rejected after having observed the most probable 
outcome under the hypothesis. Second, one may 
wonder if this is at all possible in the continuous case 
when the inevitable limitations in the measuring 
accuracy are taken into account. A part of the criti- 
cal region which is located where the probability 
density is close to its maximal value M must have 
length 6 sIM. So, if it is at all to be possible to reject 
the hypothesis where the probability density is high, 
the class width h must satisfy h < c1M. Choosing 
e = 0.01, we get, for the normal distribution with 
standard deviation a, h < 0.025 a and, for the 
exponential distribution with mean ,u, h 6 0.01 ,u. 
These measuring accuracies are completely irreal. 
For example, it does not make sense to measure 
statures, which are normally distributed with a== 6 
cm, with an accuracy h <1.5 mm. So, when m =2, 
Sverdrup's test as well as the uniformly most power- 
ful unbiased one give practically, even if not mathe- 
matically, the same result as the exact test carried out 
on the smaller level of significance es. For Sverdrup, 

= e/2 and, for the uniformly most powerful un- 
biased test, e1 is even smaller. 
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