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1. Introduction.

1.1. The principle of definition by generalized induction, perhaps best exem-
plified by the definition of the constructive second number class given by
Church and Kleene, and the corresponding principle of proof by generalized
induction were first formalized by Kreisel 1963. Also, the idea of iterating
generalized inductive definitions, as done by Church and Kleene in their defi-
nition of the higher constructive number classes, gives rise to a corresponding
principle of proof which was first stated as a formal schema by Kreisel 1964 in
his proof of the wellordering of Takeuti’s 1957 ordinal diagrams of finite
order. A complete formulation of a classical theory of generalized inductive
definitions iterated along a primitive recursive wellordering was given by
Feferman 1969 whose main object was to establish the relation between his
theory and certain subsystems of classical analysis.

1.2. In the present paper I shall give a proof theoretical analysis of the intui-
tionistic theory of generalized inductive definitions iterated an arbitrary finite
number of times. Like the Hilbert type systems of first order predicate logic
which were used before Gentzen 1934, the theories of single and iterated gen-
eralized inductive definitions formulated by Kreisel and Feferman do not
lend themselves immediately to a proof theoretical analysis. My first aim is
therefore to reformulate the axioms expressing the principles of definition
and proof by generalized induction as rules of inference similar to those intro-
duced by Gentzen 1934 in his system of natural deduction for first order pre-
dicate logic. As in Gentzen’s case, this reformulation leads to a notable sy ste-
matization which is interesting already in the case of ordinary inductive defi-
nitions, the rules corresponding to the axioms which express the principle of
definition by induction appearing as introduction rules for the inductively de-
fined predicates, whereas the axioms which express the principle of proof by
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induction give rise to the corresponding elimination rules. Moreover, the gen-
eralized inductive definitions appear as inductive definitions iterated once and
the iterated generalized inductive definitions as inductive definitions iterated
twice or more. This explains why I shall omit the attribute generalized in the
sequel and talk simply about iterated inductive definitions.

1.3. Assoon as the rules for the inductively defined predicates have been sep-
arated into introduction and elimination rules, it becomes clear that, in addi-
tion to the logical cuts discovered by Gentzen 1934, there arise certain new
cuts corresponding to the inductively defined predicates. Also, just as with

the logical cuts, there is associated in a natural way with each new form of

cut a rule of contraction which shows how to transform the deduction so that
the cut becomes eliminated. My main object is to show that, by successive ap-
plications of the rules of contraction, every deduction can be reduced to a cut
free deduction. This constitutes an extension of Gentzen’s 1934 Hauptsatz to
the intuitionistic theory of iterated inductive definitions.

1.4. The opinion seems to have been generally accepted that there be no
real cut elimination theorem for first order arithmetic and that such a theo-
rem could only be obtained by eliminating the induction schema in favour of
the wrule. However, when arithmetic is formulated as a theory of ordinary
inductive definitions, it becomes possible to formulate and prove a cut elimi-
nation theorem which is just as natural and basic as the one for pure first order
logic, although, like in second order logic, the subformula principle is neces-
sarily lost. This cut elimination theorem for first order arithmetic is just a
special case of the Hauptsatz for the theory of iterated inductive definitions
and is obtained by allowing no other predicates in that theory than those de-
fined by ordinary induction.

1.5. The method I shall use in order to prove Hauptsatz for the intuitionistic
theory of iterated inductive definitions is an extension of the method that Tait
1967 used in his proof of the normal form theorem for the terms of Godel’s
1958 theory of primitive recursive functionals of finite type. That Tait’s
method can be carried over from terms denoting functionals of finite type to
formal intuitionistic proofs is not astonishing, because Godel 1958 noted that
there is a close connection between the notion of computable functional of
finite type and the intuitionistic notion of proof, and Curry and Feys 1958
established an isomorphism between two theories that formalize the very
simplest properties of these notions, namely, their basic theory of functionali-
ty and the positive implicational calculus, respectively.
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1.6. Since Hauptsatz implies consistency, it cannot, according to Godel’s
second theorem, be proved by exclusive use of principles which are formali-
zable in the theory itself. Nevertheless, for every specific deduction in the
theory of iterated inductive definitions, the proof that it reduces to a cut free
deduction may be formalized in the theory itself. Thus, Hauptsatz becomes
provable if the theory is slightly strengthened, for example, by adding the re-
flection principle

if F(¢) is provable for all closed terms ¢, then AxF(x) .

1.7. A comparison between the method used by Gentzen 1936 in his con-
sistency proof for first order arithmetic and the method I shall use in the
present paper may be illuminating. Gentzen’s proof can be divided into the
following six parts.

1.7.1. Definition of the reduction procedure to be applied to the proof
figures.

1.7.2. Definition of an appropriate system of ordinal notations.

1.7.3. Definition of a recursive total ordering between the ordinal notations.
1.7.4. Proof of the wellfoundedness of the order relation. In the case of
Takeuti’s ordinal diagrams of finite order this proof uses the notion of acces-
sibility which is defined by iterated generalized induction.

1.7.5. Recursive assignment of an ordinal notation to every proof figure.
1.7.6. Proof that a reduction step diminishes the ordinal assigned to a proof
figure.

1.8. These six parts of Gentzen’s proof have the following counterparts in my
proof.

1.8.1. Definition of the rules of contraction.

1.8.2. Disappears, because instead of the ordinal notations I shall use the
proof figures themselves.

1.8.3. Definition of a recursive predecessor relation between the proof
figures.

1.8.4. Proof of the wellfoundedness of the predecessor relation. This proof
uses the notion of computability which is defined by iterated generalized in-
duction.

1.8.5. Disappears.

1.8.6. Disappears, because it is immediately clear that, when the reduction
procedure is applied to a proof figure, one obtains a proof figure which pre-
cedes the given one.
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1.9. Iam very grateful to Dag Prawitz who checked in detail an early version
of this paper.

2. A canonical form for the iterated inductive definitions.

2.1. The language I shall use is the standard one for first order logic. There
may be an arbitrary finite number of function symbols, but, typically, these
are just 0 and s, denoting the natural number zero and the successor function,
respectively. With each predicate symbol there is associated not only a place
index, indicating the number of argument places, but also a nonnegative in-
teger called its level. The level of a formula is defined to be the maximum of
the levels of the predicate symbols which occur in it.

2.1.1. For the sake of notational simplicity, finite sequences of variables and
terms will be denoted by single letters. For example, an atomic formula will
be written Pt where P is an nary predicate symbol and ¢ a sequence of n
terms.

2.2. An ordinary production is a figure of the form

Qq(x) .. Rr(x)
Pp(x)

with zero or more atomic formulae Qq(x), ..., Rr(x) as premises of the con-
clusion Pp(x). I use x to denote the totality of all variables that occur in the
production. The level of P must be greater than or equal to the levels of Q,
.., R.

2.3. A generalized production is either of the form

H(x) > 0q(x)
FPp(x)

called —»production or of the form

AyQq(x.y)
Pp(x)

called Aproduction. In the first case the level of P must be greater than or
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equal to the level of Q and greater than the level of the possibly composite
formula H(x) and, in the second case, the level of P must be positive and
greater than or equal to the level of Q. In both cases x denotes the totality of
all variables that occur free in the production.

2.4. The level of a production is defined to be the level of the predicate sym-
bol which occurs in its conclusion.

2.5. The productions are schemata for defining predicates and are to be un-
derstood as they stand once it has been stipulated, first, that the logical con-
stants are to have their constructive meaning, second, that the variables range
over the closed terms and, third, that the statement below a horizontal line
follows from the statements above the line. For example, the first and second
Peano axiom may be written

NO  Nx
Nsx

provided the unary predicate symbol &V is used to express the property of
being a natural number.

2.6. The above interpretation of the productions may be elaborated a bit
more so as to conform with the usual intuitionistic interpretation of the logi-
cal constants. The productions are then understood as instructions telling us
how we are allowed to construct proofs of atomic statements of the form Pt
where ¢ is a sequence of closed terms. Consider first a production of level 0.
Such a production is necessarily ordinary and tells us that if we have proofs
of Qq(1), ..., Rr(t) where t is a sequence of closed terms, then we have a proof
of Pp(t). Thus a proof of Pt where P is a predicate symbol of level 0 may be
viewed as a finite tree made up by closed substitution instances of the produc-
tions of level 0 and may, if so desired, be identified with its symbolic repre-
sentation. Having defined what constitutes a proof of a closed atomic formula
of level 0, we know automatically from the intuitionistic interpretation of the
logical constants what constitutes a proof of a closed composite formula of
level 0. Consider now a production of level 1. If it is ordinary, it tells us just
as before that if we have proofs of Qq(?), ..., R/(t) then we have a proof of
Pp(r). If it is a »>production it tells us that if we have a method of transform-
ing an arbitrary proof of H(#) into a proof of Qq(t) where ¢ is a sequence of
closed terms, then we have a proof of Pp(¢). Note that, since the level of H(t)
equals 0, we are supposed to have understood already what constitutes a proof
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of H(t). Finally, a Aproduction tells us that if we have a method which allows
us for every closed term u to construct a proof of Qq(t,u) where t is a se-
quence of closed terms, then we have a proof of Pp(f). Now we know we are
allowed to prove closed atomic formulae of level 1 and can proceed inductive-
ly to define what constitutes a proof of a closed composite formula of level 1,
a closed atomic formula of level 2 and so on.

2.6.1. Note that the definition of what constitutes a proof of an atomic
statement Pt where ¢ is a sequence of closed terms is itself an iterated induc-
tive definition which after arithmetization can be expressed by means of a
finite number of ordinary and generalized productions.

2.7. The productions can also be interpreted by means of the impredicative
notion of species. Indeed, the level restrictions ensure that there are minimal
species corresponding to the predicate symbols of level O that satisfy the pro-
ductions of level 0 and that, given these, there are minimal species correspond-
ing to the predicate symbols of level 1 that satisfy the productions of level 1
and that, given the species determined by the predicate symbols of level 0 and
1, there are minimal species corresponding to the predicate symbols of level 2
that satisfy the productions of level 2 and so on. The species determined by
the predicate symbols of level n are precisely the species which are w, recur-
sively enumerable in the sense of alfa recursion theory where w = wg, w,

-y Wy, ... denote the recursively regular ordinals enumerated in increasing
order. In particular, the species determined by the predicate symbols of level
0 are precisely the species which are recursively enumerable in the ordinary
sense.

3. The intuitionistic theory of itereated inductive definitions. This theory
formalizes the principles of proof that are implicit in the concepts just intro-
duced together with the usual concepts of first order intuitionistic logic. I shall
formulate it as an extension of the system of natural deduction introduced by
Gentzen 1934 and studied by Prawitz 1965.

3.1. A deduction is started by making some assumptions from which con-
clusions are drawn by repeatedly applying the following rules of inference.

3.2. Rules of inference associated with the logical constants.

3.2.1. —introduction.
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F->G

The formula F has been crossed out in order to indicate that some occurrences
of F as assumption of the deduction of & may have been cancelled. This means
that the assumptions of the deduction of F - G are the assumptions of the de-
duction of G minus the occurrences of F which are cancelled at the inference
from G to F - G. When an assumption is cancelled, it must be indicated in
some unambiguous way at what inference this happens. For example, Gentzen
1934 marks an assumption that is cancelled by a number and writes the same
number at the inference by which it is cancelled.

3.2.2. -*elimination or modus ponens.

F->GF
G

3.2.3. Aintroduction.

F G
FAG

3.2.4. Aelimination.

FAG FAG
F G

3.2.5. vintroduction.

F G
FvG FvG

3.2.6. velimination.
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F G

FvG H H
H

3.2.7. Aintroduction.

F(x)
NAxF(x)

This rule is subjected to the restriction that the variable x, whose free occur-

rences in the deduction of F(x) become bound by the Aintroduction, must
not occur free in any assumption of the deduction of F(x).

3.2.8. Aelimination.

AxF(x)
A1)

3.2.9. Vintroduction.

140)
VxF(x)

3.2.10. Velimination.

Fexy

VxF(x) G
G

This rule is subjected to the restriction that the variable x, whose free occur-
rences in the deduction of G from F(x) become bound by the Velimination,
must not occur free in G or in any assumption of the deduction of G other

than F(x).

3.3. The major premise of an elimination inference is the premise whose
outermost logical sign is eliminated by the inference. The other premises of
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the inference are called minor premises. The deduction of the major premise is
called the major deduction and the deductions of the minor premises are
called the minor deductions of the elimination inference.

3.4. Rules of inference for the inductively defined predicates.

3.4.1. Ordinary production.

Qq(t) ... Rr(t)
Pp(t)

3.4.2. -production.

Bty
0q(1)
Por)

The formula H(t) has been crossed out in order to indicate that some occur-
rences of H(t) as assumption of the deduction of Qq(t) may be cancelled at
the inference from Qq(¢) to Pp(t).

3.4.3. Aproduction.

Qq(t,y)
Pp(t)

This rule is subjected to the restriction that the variable y must occur neither
in t nor free in any assumption of the deduction of Qq(t,y).

3.4.4. Elimination of an inductively defined predicate.

minor
Pt deductions
F(t)

A production should be considered as an introduction rule for the predicate
which occurs in its conclusion. The rule which has been schematically repre-
sented above is the corresponding elimination rule.
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3.5. In an application of the elimination rule for an inductively defined pre-
dicate the formula Pt is called the major premise. Definition of minor premise,
major deduction and minor deduction as for the logical elimination rules.

3.6. Before explaining the elimination rule for an inductively defined predi-
cate which has been schematically represented above, I need to define what it
means for a predicate symbol to be linked with another predicate symbol.
First, every predicate symbol is linked with itself. Second, if P occurs in the
conclusion of an ordinary production

Qq(x) .. Rr(x)
Pp(x)

then P is linked with every predicate symbol which is linked with one of
0, ..., R. Third, if P occurs in the conclusion of a generalized production

H(x) > Qq(x) AyQq(x.y)
Pp(x) Pp(x)

then P is linked with every predicate symbol which is linked with Q.
3.7. An instance of the elimination rule for an inductively defined predicate
P is obtained as follows. Associate with every predicate symbol which is

linked with P an abstraction term, that is, a formula and as many variables as
indicated by the place index of the predicate symbol in question

P 0 R
M F(x) INYE 62 AzH(z)

For every ordinary production which in its conclusion has a predicate symbol
which is linked with P, say

Qq(x) .. Rrx)
Pp(x)

there should among the minor deductions of the elimination inference be one
of the form
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G@(x)) .. H(r(x)

F(p(x))

satisfying the restriction that a variable in the sequence x, whose free occur-
rences in the minor deduction become bound by the elimination inference,
must not occur free in an assumption other than the indicated G(q(x)), ...,
H(r(x)) which are all cancelled at the inference we are considering. Similarly;
for every generalized production which in its conclusion has a predicate sym-
bol which is linked with P, say

H(x) = Qq(x) NyQq(x,y)
Po(x) Pp(x)

there should among the minor deductions of the elimination inference be one
of the form

H(x) = G(q(x)) NyG(q(x.y))

Ap(x)) Fp(x))

satisfying the restriction that a variable in the sequence x, whose free occur-
rences in the minor deduction become bound by the elimination inference,
must not occur free in an assumption other than the indicated H(x) = G(q(x))
and AyG(q(x,y)), respectively, which are cancelled at the inference we are
considering.

3.8. Examples.
3.8.1. Let.L be a Qary predicate symbol of level 0 which does not occur in

the conclusion of any of the productions. Thus there is no introduction rule
for L . The elimination rule described above takes the form

|-

which is nothing but the intuitionistic rule of absurdity.
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3.8.2. Suppose we introduce a binary predicate symbol £ of level 0 for
equality by means of the ordinary production

Exx

with zero premises. £ is not to occur in the conclusion of any other produc-
tion. The introduction rule for £ makes

Ett

an axiom for every term ¢, and the corresponding elimination rule takes the
form

Etu  F(x,x)
F(tu)

which is one way of formulating the standard rules for equality as seen by
choosing F(x,y) of the form F(x) = F(y).

3.8.3. Introduce N of level O for the property of being a natural number by
means of the productions

No  Ax
Nsx

and the stipulation that N must not occur in the conclusion of any other pro-
duction. The elimination rule for N then takes the form

Fxy

Nt F(0) I';'(sx)
F@)

which is nothing but the induction schema.

3.9. A deduction all of whose assumptions have been cancelled is said to be
a proof of its end formula. A formula is provable if there exists a proof of it.
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4. Rules of contraction.

4.1. If a logical constant or an inductively defined predicate is introduced
only to be immediately eliminated we shall say that a cut occurs, and a for-
mula which is at the same time the conclusion of an introduction inference
and the major premise of an elimination inference will be called a cut formula.

4.2. To each possible form of cut there corresponds a rule of contraction
which tells us how we are allowed to simplify a deduction which ends with an
elimination inference whose major premise is the conclusion of an introduc-
tion inference by eliminating the cut.

4.2.1. —contraction.

F
) F
G .
F->G F contr
G G

Before the contraction can be carried out some bound variables in the deduc-
tion of G from F may have to be renamed so that no free variable in the de-
duction of F becomes bound after the contraction.

4.2.2. A contraction.

My et
Q

contr

R

A
F

Q
B

The case when G instead of F is inferred from F A G is quite similar.

4.2.3. vcontraction.
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F G .
. F
F .
FvG H H contr
H H

Before the contraction can be carried out, some bound variables in the deduc-
tion of H from F may have to be renamed so that no free variable in the de-
duction of F becomes bound after the contraction. The case when F v G is in-
ferred from G instead of F is quite similar.

4.2.4. Acontraction.

Fx)
NAxF(x)
F(1)

contr
F(t)

The simplified.deduction of F(¢) is obtained by substituting the term ¢ for all
free occurrences of x in the deduction of F(x). Before doing this, however,
some of the bound variables of this deduction may have to be renamed so that
no variable in ¢t becomes bound after the substitution. In the sequel it will be
tacitly assumed that bound variables are renamed whenever necessary in order
to avoid undesired ties.

4.2.5. Vcontraction.

. FEx) .

: . F(t)
F() : .
VxF(x) G contr .
G G

The lower part of the simplified deduction is obtained by substituting the
term ¢ for all free occurrences of x in the deduction of G from F(x).
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4.2.6. Contraction of an ordinary production.

Q‘I(t) R’:(t) minor

Pp(1) deductions  contr

F(p(1))

- minor : minor
Qq(t) deductions R(t) deductions

Gg(®)) H(r(t))

Fo()

The lower part of the simplified deduction is obtained from that one of the
minor deductions of the given deduction which is of the form

G(q(x)) -.. H(r(x))

Fp)

by substituting each term in the sequence ¢ for all free occurrences of the
respective variable in the sequence x.

4.2.7. Contraction of a »production.

H(r) _H¢t)
QQ(t) minor QCI(I) de‘r;:wﬁo“s
Pp(t) deductions contr G(q(1)
F(p(t)) H(t) »> G(q(1))
Fo()

The lower part of the simplified deduction is obtained from that one of the
minor deductions of the given deduction which is of the form
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H(x) > G(q(x))

»
-

Fp(x))

by substituting each term in the sequence ¢ for all free occurrences of the res-
pective variable in the sequence x.

4.2.8. Contraction of a Aproduction.

Q‘I(.f,y) minor Qq(t,y) deductions
Pp(t) deductions contr G(@q(ty))
Fp(1)) NyG(q(t.y))
Fp)

The lower part of the simplified deduction is obtained from that one of the
minor deductions of the given deduction which is of the form

NyG(q(x.y))

Fp(x))

by substituting each term in the sequence ¢ for all free occurrences of the res-
pective variable in the sequence x.

4.3. A deduction reduces to another deduction if the latter can be obtained
from the former by repeated contractions of subdeductions, where by a sub-
deduction I mean an initial part of a deduction.

4.4. A deduction which cannot be further reduced is said to be cut free or

normal. We are now prepared to formulate the Hauptsatz or normal form
theorem for the intuitionistic theory of iterated inductive definitions.

5. Hauptsatz. Every deduction reduces to a normal deduction.
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5.1. The structure of my proof of Hauptsatz can be described as follows.
First, I shall define by ordinary induction what it means for a deduction to be
normalizable. Roughly speaking, a deduction is normalizable if it can be
brought on normal form by carrying out successive contractions of subdeduc-
tions in a specific order which I believe is the most natural one. Second, I shall
define what it means for a deduction to be computable. The definition of
computability, which utilizes iterated inductive definitions of precisely the
kind that my theory formalizes, is such that it is immediately clear that a
computable deduction is also normalizable. The proof is then completed by
showing that every deduction is computable. Once the notion of computa-
bility has been defined, this final part of the proof, although involving many
cases, is in principle a mere verification.

5.2. Suppose a deduction ends with an elimination inference. Note that an
elimination inference always has one and only one major premise. Thus, by
always choosing the major premise of an elimination inference, we can in a
unique way proceed upwards in the deduction from the end formula until we
reach either a cut or a top formula. In the first case, the cut we hit upon will
be called the main cut and, in the second case, the branch we have proceeded
along will be called the main branch. Since the main branch never passes
through an introduction inference and always through the major premise of an
elimination inference, the top formula in the beginning of the main branch
cannot have been cancelled. This fact will be crucial when we come to the
determination of the form of cut free deductions.

6. Definition of what it means for a deduction to be normalizable.

6.1. The deduction consists solely of an assumption. Then it is normalizable
outright.

6.2. The last inference of the deduction is an introduction. Then it is norma-
lizable provided the deductions of the premises of this inference are all nor-
malizable.

6.3. The last inference of the deduction is an elimination.

6.3.1. The deduction has a main cut. Then it is normalizable provided the de-
duction which is obtained from it by eliminating the main cut is normalizable.
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6.3.2. The deduction has no main cut. Then it is normalizable provided the
minor deductions of the eliminations on the main branch are all normalizable.

6.4. Each clause in the definition of normalizability asserts that a given de-
duction is normalizable provided certain (finitely many) other deductions,
which we may call the predecessors of the given deduction, are all normaliz-
able. Thus, a deduction is normalizable if and only if the tree of its successive
predecessors is wellfounded. This finite tree is then called the normalization
of the deduction.

6.5. If a deduction is normalizable, then it reduces to a normal deduction.
This is seen immediately by induction on the normalization of the deduction.

7. Definition of what it means for a deduction to be computable. I proceed
by induction on wn + m where m is the number of logical signs and »n the level
of the end formula of the deduction. Thus, in the definition of computability
for deductions whose end formula contains m logical signs and is of level n, 1
assume that computability has already been defined for all deductions whose
end formula has a lower value of wn + m.

7.1. The deduction consists solely of an assumption. Then it is computable
outright.

7.2. The last inference of the deduction is an introduction.

7.2.1. —introduction.

&

G
F>G

is computable provided
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G
is computable for every computable deduction
F
Note that the formula F has a lower value of wn + m than F - G.

7.2.2. Aintroduction.

F G
FAG

is computable provided

F G
are both computable.
7.2.3. vintroduction.

Y

FvG

is computable provided
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F
is computable. Similarly when Fv G is inferred from G instead of F.

7.2.4. Aintroduction.
F(x)
AxF(x)

is computable provided

(1)
is computable for every term ¢.

7.2.5. Vintroduction.

F(1)
VxF(x)

is computable provided

(1)
is computable.

7.2.6. Ordinary production.
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0a() ... RAD)
Po(s)

is computable provided

Qq(?) Rr(t)
are all computable.

7.2.77. —production.

Hty

04(1)
Po(t)

is computable provided

H()

0a(t)

is computable for every computable deduction

Htt)

Note that, because of the level restrictions on a »production, the formula
H(t) has a lower value of wn + m than Qq(¥).

7.2.8. Aproduction.
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Qq('t.y_)
Pp(t)

is computable provided

Qq(t,u)
is computable for every term u.

7.3. The last inference of the deduction is an elimination.

7.3.1. The deduction has a main cut. Then it is computable provided the de-
duction which is obtained from it by eliminating the main cut is computable.

7.3.2. The deduction has no main cut. Then it is computable provided the
minor deductions of the eliminations on the main branch are all normalizable.

7.4. Each clause in the definition of computability asserts that a deduction is
computable provided certain (infinitely many, in general) other deductions,
which we may call the predecessors of the given deduction, are all computable.
Thus, a deduction is computable if and only if the tree of its successive pre-
decessors is wellfounded. This infinite wellfounded tree is then called the
computation of the deduction.

7.5. A deduction which is computable is also normalizable. This is seen by
comparing clause for clause the definition of normalizability with the defini-
tion of computability, thereby remembering that a deduction which consists
solely of an assumption is computable. Expressed differently, what we have
achieved is an imbedding of the finite tree which we have called the normaliza-
tion of a deduction into the huge infinite tree which we have called its comput-
ation. Therefore, the wellfoundedness of the former follows from the well-
foundedness of the latter.
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8. Theorem. Every deduction is computable. This is proved by induction
on the length of the deduction, but we have to make a stronger induction
hypothesis, namely, that if we, first, substitute arbitrary terms for its free
variables and, second, to the deduction obtained after the substitution attach
arbitrary computable deductions of its assumptions, then the resulting deduc-
tion is computable. Several cases have to be distinguished depending on how
the end formula of the deduction has been inferred.

8.1. The deduction consists solely of an assumption. Trivial.

8.2. =introduction. We have to show that a deduction of the form

F
G
F->G

is computable. By 7.2.1 this is so if

G
is computable for every computable deduction
F
which follows immediately from the induction hypothesis.

8.2.2. Aintroduction. We have to show that a deduction of the form
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F G
FAG

is computable. By 7.2.2 this is so if

F G
are both computable which follows immediately from the induction hypo-
thesis.
8.2.3. vintroduction. We have to show that a deduction of the form

F
FvG

is computable. By 7.2.3 this is so if

F
is computable which follows immediately from the induction hypothesis.

8.2.4. Aintroduction. We have to show that a deduction of the form

Fx)
AxF(x)

is computable. By 7.2.4 this is so if

20)
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is computable for every term ¢ which follows immediately from the induction
hypothesis.

8.2.5. Vintroduction.We have to show that a deduction of the form

20
VxF(x)

is computable. By 7.2.5 this is so if

F(1)
is computable which follows immediately from the induction hypothesis.

8.2.6. Ordinary production. We have to show that a deduction of the form

Qa(t) . Rr(t)
Pold)

is computable. By 7.2.6 this is so if

Qq(1) Rn(?)
are all computable which follows immediately from the induction hypothesis.

8.2.7. -production. We have to show that a deduction of the form

~Hety

04(0)
20
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is computable. By 7.2.7 this is so if

H(P)

Qq-(t)

is computable for every computable deduction

H(1)
which follows immediately from the induction hypothesis.

8.2.8. Aproduction. We have to show that a deduction of the form

Qq(t,y)
Pp(t)

is computable. By 7.2.8 this is so if

Qq(t.u)

is computable for every term u which follows immediately from the induction
hypothesis.

8.3. The last inference of the deduction is an elimination. We use induction
on the computation of the major deduction of this elimination inference. This
induction is, of course, subordinate to the basic induction on the length of the
given deduction. Basis. The major deduction of the final elimination is com-
putable according to 7.1 or 7.3.2. Then the computability of the deduction
follows from 7.3.2 by using the fact that, according to the basic induction
hypothesis, the minor deductions of the final elimination are computable and
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a fortiori normalizable. Induction step. If the major deduction of the final
elimination is computable according to 7.3.1, then the computability of the
deduction follows immediately from the subordinate induction hy pothesis
and 7.3.1. The crucial case arizes when the last inference of the major deduc-
tion of the final elimination is an introduction, that is, when the major prem-

ise of the final elimination is a cut formula. Eight subcases have to be disting-
uished depending on the form of this cut.

8.3.1.

According to the basic induction hypothesis, the deductions

are both computable. By 7.2.1 so is

G

The computability of the given deduction now follows from 7.3.1.
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8.3.2.
F G

FAG
F

According to the basic induction hypothesis

F G
FAG

is computable. By 7.2.2 so is

F
The computability of the given deduction now follows from 7.3.1.

8.3.3.
F &
F_ o o
FvG H H
H

According to the basic induction hypothesis

F
FvG

is computable. By 7.2.3 so is
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F

Applying the basic induction hypothesis again, we can conclude that

H
is computable. The computability of the given deduction now follows from

7.3.1.

8.3.4.

F(x)
NxF(x)
F(?)

According to the basic induction hypothesis

Fx)
AxF(x)

is computable. By 7.2.4 so is

F(.t)

The computability of the given deduction now follows from 7.3.1.
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8.3.5.
y2e9)
_F(@) :
VxF(x) G
G

According to the basic induction hypothesis

20
VxF(x)

is computable. By 7.2.5 so is

Q)

Applying the basic induction hypothesis again, we can conclude that

(1)
G
is computable. The computability of the given deduction now follows from
7.3.1.

8.3.6.

QQ(t) - RA(1) minor
Pp(t) deductions

Fp(1))
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By 7.3.1 it suffices to show that

. minor : minor
Qq(t) deductions Rr(t) deductions

G(q(0)) H(r(1))

()

is computable. Now, the computability of the deductions of G(q(t)), ---,

209

H(r(2)) follows from the subordinate induction hypothesis stated in 8.3, and
the computability of the whole deduction then follows from the basic induc-
tion hypothesis. Remember that the deduction of F(p(t)) from G(q(?)), ...,

H(r(1)) is obtained from that one of the minor deductions which is of the

form

Glg(x)) .. H(rx))

Fp)

by substituting each term in the sequence ¢ for all free occurrences of the res-

pective variable in the sequence x.

8.3.7.
Hty

Qq(9) minor
Pp(t) deductions

Hp(1))

By 7.3.1 it suffices to show that
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- minor
Qq(t) deductions

G(q(D)
H(t) ~> G(q(1))

Fp()

is computable. This follows from the basic induction hypothesis if we can
prove the computability of

_H(T1y

Qq(t) degl:t(i)crms
G(a(1))
H(#) > G(q(1))

By 7.2.1 the latter deduction is computable provided

Hit)

. minor
Qq(t) deductions

G(q())

is computable for every computable deduction

Hit)

This, in turn, follows from the subordinate induction hypothesis stated in 8.3.
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8.3.8.

Qq(t.y)  minor
Pp(t)  deductions

Fp(1))

By 7.3.1 it suffices to show that

Qq(.t,y) deductions
_Gla(ry))
NyG(q(t.y))

Hp(1))

is computable. This follows from the basic induction hypothesis if we can
prove the computability of

Qq(.t,y) deductions
Gq(ty))
NrG(q(t.))

By 7.2.4 the latter deduction is computable provided

- minor
Qqft,u) deductions
G(q(t))

is computable for every tetm u. This, in turn, follows from the subordinate
induction hypothesis stated in 8.3.



212 P.MARTIN-LOF
9. Corollaries which follow from Hauptsatz by combinatorial reasoning.

9.1. If an atomic formula of level 0 is provable, then it has a proof which
consists entirely of applications of the productions of level 0. Note that these
are all ordinary.

9.1.1. Suppose we are given a proof of an atomic formula of level 0. Accord-
ing to Hauptsatz, it reduces to a normal proof. This normal proof must con-
sist entirely of applications of the productions of level 0, because, otherwise,
there would be a lowest formula in the proof which is not the conclusion of a
production of level 0. The proof of this formula must end with an elimination
inference and, consequently, the assumption in the beginning of its main
branch cannot have been cancelled. However, all asumptions of a proof are
cancelled. We have reached a contradiction.

9.1.2. We might, using the terminology of Hilbert, say that atomic formulae
of lowest level express real statements and that composite formulae as well as
atomic formulae of higher level express ideal statements. Corollary 9.1 may
then be interpreted as saying that we can always eliminate the use of ideal
statements from a proof of areal statement. However, our proof of this fact
uses the full force of the ideal statements which means that, in agreement with
Godel’s second theorem, no reduction of the kind Hilbert aimed at is achieved.
Nevertheless, something else and important follows from our analysis, namely,
that, once we have formalized a proof of a real statement, a proof in which
ideal statements may occur as a vehicle, we can find the direct proof, which
does not make the excursion via ideal statements, mechanically, that is, by
symbol manipulation.

9.2. If Fv Gis provable, then either F or G is provable.

9.2.1. Suppose we are given a proof of F v G. According to Hauptsatz, it re-
duces to a normal proof. This normal proof cannot end with an elimination in-
ference, because in that case the assumption in the beginning of its main
branch could never have been cancelled. Thus, it ends with an introduction in-
ference which necessarily must be an application of the vintroduction rule.
The proof of the premise of this final vintroduction is either a proof of F or a
proof of G.

9.3. If IxF(x) is provable, then so is F(t) for some term t.
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9.3.1. The normal proof of VxF(x) which we get by applying Hauptsatz
must end with an introduction inference, because, otherwise, the assumption
in the beginning of its main branch could not have been cancelled. Conse-
quently, it is of the form

F(f)
VxF(x)

and the desired proof of F(t) is obtained by deleting the last inference.
10. Probable wellorderings. The precise bound on the provable wellorderings
of the intuitionistic theory of iterated inductive definitions equals
Lim F! (1)
. ¢
Fy(1)
in Isles’s 1968 generalized Bachmann notation.

10.1. Let O(n) denote the least upper bound of Takeuti’s 1957 ordinal dia-
grams of order n. According to Levitz’s lecture at the conference in Buffalo
1968

O(n) = F! (1
F? ()
'F";(l) .

and

O(n—1)< F1 (1) <0(n)
F? (N

.F'é(l).
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for every n. Also, Kreisel 1964 has formalized the proof of the wellfounded-
ness of O(n) in the intuitionistic theory of iterated inductive definitions with
predicates of level n at most. This shows that the least upper bound of the
provable wellorderings of the intuitionistic theory of iterated inductive defi-
nitions is at least as big as

Lim F! (1)
F? (D
F3(1)

In order to prove the converse inequality we shall consider the intuitionistic
theory of iterated inductive definitions based on the productions

NO Nx Esxsy EQOsx Exx Exy
Nsx Exy L Esxsy

the productions

Pxy..x, Ex\y, .. Expy, 1

Pyi.y, Px..x,

for every predicate symbol P and defining productions of arbitrarily many
further predicates with which neither 1 nor E is to be linked. Replacing every
predicate except L and £ by its least species interpretation as described in
2.7, in particular, N by

MAX(X 0 ANx(Xx->Xsx)>Xx)

we interpret this theory into intuitionistic second order logic with the axioms
for equality, the third and fourth Peano axiom

AxN\y(Esxsy-Exy)  Ax(EOsx—1)

and the comprehension axiom restricted to formulae which are semi isolated in
the sense of Takeuti 1967. Now, Takeuti 1967 showed the consistency of his
system SINN, which is equivalent to classical second order logic with the semi
isolated comprehension axiom, the axioms for equality and the third and
fourth Peano axiom, by using the principle of transfinite induction on
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Lim O(n)

as the only non finite method of proof. Consequently, the wellfoundedness of
this ordinal cannot be proved in the intuitionistic theory-of iterated inductive
definitions since, in that case, we could formalize a consistency proof for the
theory specified above in the theory itself, contradicting Godel’s second
theorem.

10.2. At aseminar in Stanford summer 1969, I conjectured that if we only
allow predicates of level less than z in the intuitionistic theory of iterated
inductive definitions the precise bound on the provable wellorderings equals

F! (1)
F? (1)

.Fg(l)-

Forn =1 and n = 2 this has been proved by Gentzen 1943 and Howard and
Gerber 1968, respectively, because

Fi()=e¢ ' (D)=p, (D)
2 0 F%(l) +1

Also, Zucker 1969 has, without knowledge of my conjecture, demonstrated
its validity forn = 3.

10.3. In the above determination of the ordinal associated with the intui-
tionistic theory of iterated inductive definitions, all the hard part of the anal-
ysis was taken from Takeuti 1967. 1 believe, however, that it will be possible
to carry out the ordinal analysis in a much more perspicuous way directly for
the theory of iterated inductive definitions. This belief is based on the follow-
ing observations. Looking at the definition of computability, one sees that the
computation of a deduction with end formula of level » is an w, arithmetical
tree of deductions and, hence, that its length is dominated by cw,,, . However,
once it has been proved that every deduction is computable, it appears that
the computations are actually recursive trees of deductions and hence that
their lengths are dominated by w; already. (This does not mean, of course,
that we have eliminated the use of the higher constructive number classes, be-
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cause they enter effectively into the proof of the recursiveness of the compu-
tations.). Also, since there is a recursive procedure which associates with every
deduction its computation, the lengths of the computations will be uniformly
bounded by a certain recursive ordinal. I expect that it will be possible to
estimate the lengths of the computations by means of the ordinal diagrams of
finite order or, equivalently, the generalized Bachmann notations considered
above. Conversely, let R be a binary predicate of level 0 and let the unary
predicate 4 of level 1 express accessibility with respect to the relation R. Then
it is easy to see that the computation of a proof of At where ¢ is a closed term
cannot be shorter than the rank of ¢ with respect to the relation R. Conse-
quently, it is not possible to measure the lengths of the computations by
means of a system of ordinal notations which is smaller than

Lim Fl 4))
F (1)

F3(1)
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HAUPTSATZ FOR THE THEORY OF SPECIES

Per MARTIN-LOF
University of Stockholm

1. Introduction.

1.1. The completeness of the cut free rules for the (impredicative) theory of
species was proved by Prawitz 1968. However, using his method, it has not
been possible to prove that every deduction can be normalized by successive
eliminations of cuts. This seems to be due to the fact that, although one is
primarily interested in properties of the proof figures, the semantical notions
used apply not to the proof figures but to the farmulae of the system.

1.2. A semantical notion, specially invented for the purpose of proving nor-
mal form theorems, is Tait’s 1967 notion of computability (or convertibility
as he says). Martin-Lof 1970 showed that the method of computability applies
not only to terms but also to formal proofs and extended it to the intuitionis-
tic theory of iterated inductive definitions. Simultaneously, Girard 1970 has
extended the method to a system of terms which is so strong that it can be
used to interpret full classical analysis.

1.3. The purpose of the present paper is to show that by making use of
Girard’s idea it is now possible to analyse the theory of species by means of
the method of computability(). It follows from this analysis that every deduc-
tion of the theory of species actually reduces to a cut free deduction.

2. Syntax.

2.1. The language we shall consider contains individual variables, possibly
function constants, species variables, possibly species constants, and finally,

(*) This possibility has also been realized by Prawitz. See appendix B of his contri-
bution to this volume.

217
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the logical constants - and A. A universal quantifier binds either an individual
variable or a species variable. Absurdity, conjunction, disjunction and existen-
tial quantification are all defined as in Prawitz 1965, that is, by putting

1 =AYY
FAG =AY((F+G~Y))~Y)
Fv G =N\Y(F>Y)((G-Y)Y))
VxF(x) = NY(Ax(F(x)~>Y)~>Y)
VXF(x) = A\Y(NX(F(X3~Y)~Y)
where Y is a Oary species variable.

2.2. Finite sequences of variables and terms will be denoted by bold face
letters. If X is a sequence of n individual variables and F(x) a formula, then
T = AXF(X) is an nary species term. If t is a sequence of » individual terms,
then Ttdenotes the formula F(t).

2.3. Free and bound occurrences of a variable in a formula are defined as
usual. If x is one of the variables in the sequence X, then every occurrence of
x in T = AXF(X) is bound. Formulae and species terms which only differ in
the naming of their bound variables are identified.

2.4. If T is an nary species term, X an nary species variable and F(X) a for-
mula, then F(T) denotes the formula which is obtained by replacing every
part of F(X) of the form Xt for which X is free by Tt. Before doing this, how-
ever, one may have to rename some bound individual variables in T so that no
variable occurrence in t becomes bound in 7t. Likewise, one may have to re-
mane some bound variables in F(X) so that no variable occurrence which is
free in T becomes bound in F(T).

3. Rules of inference .

3.1. We shall use Prawitz’s 1965 system of natural deduction for second
order logic in its first version. Thus, deductions are built up from assump-
tions by means of the following rules of inference.



3.1.1.

3.1.2.
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->introduction.

F

F->G
->elimination or modus ponens.

F->G F
G

. Aintroduction of first order.

F(x)
AxF(x)

. Aelimination of first order.

AxF(x)
(1)

.5. Aintroduction of second order.

F(X)
AXF(X)

. Aelimination of second order.

AXF(X)
F(T)

219

3.2. Free and bound occurrences of a variable in a deduction are defined as

in Martin-Lof 1970. Deductions which only differ in the naming of their

bound variables are identified. It will be tacitly assumed that bound variables

are renamed whenever necessary in order to avoid undesired ties.

3.3. The notions of major premise, minor premise, major deduction, minor
deduction, cut, main cut and main branch are defined as in Martin-Lof 1970.
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4. Rules of contraction .

4.1. —contraction.

y
) F
G . contr
F->G F .
G G

4.2. Acontraction of first order.

_Fx)
AxF(x) contr .
F(1) (1)

4.3. Acontraction of second order
F(X)

AXF(X) contr .
H(T) H(T)

5. The definition of what it means for a deduction to be normalizable can
be carried over word for word from Martin-Lof 1970.

6. Computability predicates .

6.1. Let T be a species term. A predicate ay which is defined for deductions
of the form
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will be called a computability predicate of type T (candidat de réductibilit€ in
Girard’s terminology) if it satisfies the following conditions.

6.1.1. A deduction which consists solely of an assumption satisfies ...

6.1.2. A deduction which ends with an elimination inference and has a main
cut satisfies ar if and only if the deduction which is obtained from it by eli-
minating the main cut satisfies a;.

6.1.3. A deduction which ends with an elimination inference and has a cut
free main branch satisfies a4 if and only if the minor deductions of the ap-
plications of modus ponens on the main branch are all normalizable.

6.1.4. If a deduction satisfies a, then it.is normalizable.

6.2. There are plenty of computability predicates. For example, the predicate
which holds precisely for the normalizable deductions with end formula of
the form 7t is a computability predicate of type T.

7. Let X=X, ..., X,, be a sequence of species variables and ‘et T=T7, ...,
T, andat = Qs 0 AT, be corresponding sequences of terms and computa-
bility predicates, respectively. Then, if 7(X) = AXF(x,X) is a species term all
of whose free species variables occur in the sequence X, we shall introduce a
new predicate 7 x)(aT) which is to be defined for deductions of the form

At.T)

Such a deduction is to satisfy vrX)(eT) if and only if it satisfies ‘PF(t,T)(aT)
and so it suffices to define ‘PF(X)(O‘T) for an arbitrary formula F(X). This we
do by induction on the number of logical signs in F(X). Basis. F(X) is atomic.
If C is a species constant, then a deduction with end formula Ct satisfies
¢ct(or) if and only if it is normalizable. If X is a species variable, then a de-
duction with end formula Tt satisfies  y ¢(7,T) if and only if it satisfies a7.
Induction step. F(X) is composite. Several cases have to be distinguished de-
pending on the last inference of the deduction for which ‘PF(X)(O‘T) is to be
defined.
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7.1. The deduction which consists solely of the assumption F(T) satisfies
vroo(T)-

7.2. The last inference of the deduction is an introduction.

7.2.1. =introduction.

BTy
G(T)
F(T)~ G(T)

satisfies op(xy->g (X)(O‘T) provided
HT)
G(T)

satisfies g x)(eT) for all

AT)
that satisfy er X))

7.2.2. Aintroduction of first order.

F(x,T)
AxF(x,T)

satisfies p yr(,, X) (@) provided
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F1T)
satisfies o, xy(a) for all individual terms ¢.

7.2.3. Aintroduction of second order.

FXT)
AXFX,T)

satisfies p 5 ypx X)(@T) provided

F(T.T)

satisfies oy x)(aT,aT) for all species terms T and computability predicates
aT.

7.3. The last inference of the deduction is an elimination.

7.3.1. The deduction has a main cut. Then it satisfies ‘PF(X)(aT) provided
the deduction which is obtained from it by eliminating the main cut satisfies

vrX)aT)-

7.3.2. The deduction has a cut free main branch. Then it satisfies g x)(e)
provided the minor deductions of the applications of modus ponens on the
main branch are all normalizable.

8. ¢pXxyleT) is a computability predicate of type 7(T).

8.1. That ‘PT(X)(O‘T) satisfies 6.11, 6.12 and 6.13 follows immediately
from the definition. To verify 6.14 it clearly suffices to show for an arbitrary
formula F(X) that if a deduction satisfies ‘PF(X)(O‘T) then it is normalizable.
This we do by induction on the number of logical signs in F(X). Basis. Imme-
diate from the definition. Induction step. If F(X) is composite, then a deduc-
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tion satisfies pgxy(a) if and only if, by a finite number of eliminations of
main cuts, it reduces to a deduction which consists solely of an assumption,
has a cut free main branch with normalizable minor deductions or else ends
with an introduction inference. In the first two cases we are done immediate-
ly and in the third case we have to consider separately each possible form of
the introduction inference.

8.1.1. —introduction.If

ET)
G(T)
FT)-G(T)

satisfies PR(X)~G (X)(O‘T)’ then

F(T)

G(T)

satisfies g (x)(e). By induction hypothesis, the latter deduction is norma-
lizable, and, consequently, so is the former.

8.1.2. Aintroduction of first order. If

Fex,T)
AxFGeT)

satisfies g p(x, x)(aT), then

Fix,T)

satisfies g, x)(aT). By induction hypothesis, the latter deduction is norma-
lizable and, consequently, so is the former.



HAUPTSATZ FOR THE THEORY OF SPECIES 225

8.1.3. Aintroduction of second order. If

FX.T)
AXF(X,T)

satisfies p A y(x x)(@T), then

AXT)

satisfies ppy x)(@y.o1) for all ay. By induction hypothesis, the latter deduc-
tion is normalizable and, consequently, so is the former.

9. Consider a deduction

Fi(X) .. F(X)

.F(X).

whose free species variables form the sequence X and whose assumptions are
F1(X), ..., F,(X). Then, for all individual terms that we substitute for its free
individual variables and for all sequences of species terms T that we substitute
for X and for all a, if the deductions

F((T) .. FT)

satisfy YF, )@ s (,OFn(X)(aT), respectively, then

Fi(T) .. F(T)

. D) .
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satisfies g x)(aT)- The proof is by induction on the length of the deduc-
tion. Several cases have to be distinguished depending on how the end for-
mula of the deduction has been inferred.
9.1. The deduction consists solely of an assumption. Trivial.
9.2. The last inference is an introduction.
9.2.1. =introduction. We have to show that a deduction of the form

BT)

G(T)
HT) - G(T)

satisfies SOF(X)—>G(X)(QT)’ By 7.2.1 this is so if

A(T)

G(T)

satisfies p g x,(aT) for all

AT)

that satisfy ‘PF(X)(O‘T) which follows immediately from the induction hypo-
thesis.

9.2.2. Aintroduction of first order. We have to show that a deduction of the
form

F(x,T)
AxF(x,T)
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satisfies p, p, Xy(@T)- By 7.2.2 this is so if

ALT)

satisfies g, x)(et) for all individual terms ¢ which follows immediately from
the induction hypothesis.

9.2.3. Aintroduction of second order. We have to show that a deduction of
the form

FX.T)
AXA(X,T)

satisfies gpAXF(X’x)(OtT). By 7.2.3 this is so if

ATT)

satisfies gy X)(ar.e7) for all T and a which follows immediately from the
induction hypothesis.

9.3. The last inference of the deduction is an elimination.

9.3.1. —elimination. We have to show that a deduction of the form

RT)~G(T) F(T)
G(T)

satisfies ‘PG(X)(O‘T)' By induction hypothesis

F(T) > G(T)
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satisfies ¢F(X)+G(X)(aT)- Consequently, by a finite number of eliminations
of main cuts, it reduces to a deduction which consists solely of an assumption,
has a cut free main branch with normalizable minor deductions or else ends

with an introduction inference. In the first two cases we are done since by in-
duction hypothesis.

AT)

satisfies x)(e1) and is a fortiori normalizable. In the third case we know
that

_BT)
G(T) A(T)
R(T) > G(T)

satisfy o xy->g(X)(@T) and ¢p(x)(aT), respectively. By 7.2.1
A(T)
G(T)

satisfies g x)(eT)-and, consequently, so does

_BT)

Gg.! ) .
FT) > G(T) AT
G(T)

which was to be proved.

9.3.2. ANelimination of first order. We have to show that a deduction of the
form
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/\xFix,T)
F(T)

satisfies pp(, x)(aT). By induction hypothesis

AxF(x,T)
satisfies o, p(, X)(@T)- Consequently, by a finite number of eliminations of
main cuts, it reduces to a deduction which consists solely of an assumption,
has a cut free main branch with normalizable minor deductions or else ends

with an introduction inference. In the first two cases we are done and in the
third case we know that

Fx,T)
AxF(x,T)

satisfies ¢ ayx, X)(T)- By 7.2.2

AL T)

satisfies ¢, x)(@T) and, consequently, so does

F(,T)
AxF(x,T)
F(1,T)

which was to be proved.

9.3.3. Aelimination of second order. We have to show that a deduction of
the form
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AXF(X,T)
F(I(T),T)

satisfies g (x) X)y(@)- By induction hypothesis

AXF(X,T)

satisfies o yp(x, x)(aT). Consequently, by a finite number of eliminations of
main cuts, it reduces to a deduction which consists solely of an assumption,
has a cut free main branch with normalizable minor deductions or else ends
with an introduction inference. In the first two cases we are done and in the
third case we know that

FXT)
AXFX.T)

satisfies 9 A yp(x X)(o)- By 7.2.3

AT(T),T)

satisfies oy x)(@7(T),2T) for all computability predicates ay and, con-
sequently, so does

FXT)
AXFX,T)
RI(T)T)

It now only remains to put T = ‘PT(X)(O‘T) and use the subsitution proper-
ty
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erx, X)Prer)e = err ), X)@T)

which is immediately verified by induction on the number of logical signs in
the formula F(X, X).

10. Hauptsatz. Every deduction is normalizable.

10.1. Given an arbitrary deduction, let X be the totality of its free species
variables and F(X) its end formula. From what we have just proved it follows
that the deduction satisfies g x)(ax) whatever be the choice of the sequence
of computability predicates ax. In particular, it is normalizable.

10.2. Inspection of the proof of Hauptsatz shows that for every specific de-
duction the proof that it is normalizable can be formalized in the theory of
species itself.

11. The following three corollaries which follow from Hauptsatz by com-
binatorial reasoning are due to Prawitz 1968 who derived them from his com-
pleteness theorem for the cut free sequent calculus which corresponds to the
system of natural deduction we are considering. We provide the proofs since
they are somewhat different for the system of natural deduction.

11.1. Froma proof of Fv G we can find a proof of either F or G.

11.1.1. The normalized proof of Fv G = AY((F-Y) - ((G>Y)>Y)) must
have one of the forms

E~Y G>Y E~Y _GY

Es¥ F GoY G

Y Y
(G-Y)-Y (G-Y)->Y
(FY) > (G-Y)~Y) (F-Y) -~ (G-Y)Y)
FvG FvG

The left proof contains a deduction of F from the assumptions F - Y and
G — Y. By substituting F v G for Y we obtain a:deduction of F from the as-
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sumptions F > (F v G) and G - (F Vv G). Attaching proofs of F = (F v G)
and G - (F v G) to this deduction we obtain the desired proof of F. If the
proof of F v G has the form pictured to the right, we obtain a proof of G by
the same argument.

11.2. From a proof of \xF(x) we can find an individual term t and a proof

of F(t).

11.2.1. The normalized proof of VxF(x) = AY(Ax(F(x)~Y)>Y) must have
the form

AHAF YY)
AFCPTT
Fi)> Y A(f)
Y

Ax(F(xy>Y)->Y
VxF(x)

Take the subdeduction of F(¢) from the assumption Ax(F(x)->Y), substitute
VxF(x) for Y and attach a proof of Ax(F(x)>VxF(x)). We then get the de-
sired proof of F(¢).

11.3. From a proof of VXF(X) we can find a species term T and a proof of
().

11.3.1. The normalized proof of VXF(X) = AY(AX(F(X)>Y)-Y) must have
the form

DXEXT)

AXFHT)
RUY)~Y RUY)
B Y
AXEX)Y) > Y
VXA

Take the subdeduction of F(U(Y)) from AX(F(X)>Y), substitute VXF(X) for
Y and attach a proof of AX(F(X)»V XF(X)). We then get a proof of F(T)
where T = U(VXF(X)).
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12. The extension of the treatment of second order logic given in the present
paper to the full theory of types is rather straightforward and will be pub-
lished elsewhere.
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